|
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
DEH顺序阀控制参数整定, |' O5 I7 U3 p6 n$ j4 C r @
新建大、中型机组中汽轮机,均采用数字电液控制系统(DEH)进行控制。通常,新建机组在试运行阶段,汽轮机处于单阀控制及汽轮机各高压调门同时参与调节,各调门开度相同。低负荷时,高压调门开度较小,因而高压调门的截流损失较大,不利于机组长期经济运行。# z. w$ v2 L Q0 A, n. r
因此,新建机组试生产结束后,为了提高机组运行的经济性,将汽轮机从单阀运行切换至顺序阀运行是一个非常重要的措施。尽管顺序阀控制是DEH中的一个基本功能,但由于现场安装等因素的影响,高压调门实际的流量特性与DEH中预置的流量特性曲线(DEH出厂时的预置值)会有差异。
0 W, c: E F1 e6 }& [+ L 这一问题将导致在进行单阀—顺序阀切换时机组负荷扰动大,汽轮机主要运行参数出现异常变化,影响机组的安全。因此,在顺序阀功能投用前,应通过特性试验校验高压调门的实际流量特性,设置各高压调门之间的重叠度,使单阀—顺序阀的切换能平稳地进行,减小切换过程中对汽轮机重要参数的影响(如振动、瓦温等),保证机组安全稳定地运行。
& W$ h7 g5 o; }1 I! Z' P! X7 ? c1 DEH顺序阀控制原理
/ g5 X7 Z9 R* ]% h1 X' Q3 |) v 顺序阀控制是DEH中机组功率控制的一种控制功能,按照汽轮机高压调门的开关顺序,对汽轮机流量指令进行分配,从而确定各高压调门的流量,最终确定各高压调门的开度。这些控制策略一般包含在DEH的阀门管理控制功能中。, J, _, m3 z7 x7 U A3 r/ Y
扬州第二发电厂(以下简称扬二厂)选用西屋公司WDPF MODⅢ型数字电液控制系统,在顺序阀运行时,汽轮机的流量指令FDEM需经过背压修正、比例偏置修正、GV流量修正、GV流量开度函数修正后,产生各个GV的开度指令。控制原理见图1。
9 u, J* Y# b( |0 G! r# q& q
; y7 D8 T. s5 @+ `& t4 R FDEM可在机组负荷控制时手动给定或由功率调节器运算产生。流量背压修正函数F(X1)是机组流量需求与流量指令的修正函数。汽轮机在不同的流量作功时,汽轮机排汽压力随之变化,蒸汽焓降变化,相应的作功能力不同,因此需对不同的蒸汽流量指令进行修正。例如,随着负荷升高,汽轮机蒸汽流量增加,汽轮机排汽压力升高,流量需求必须通过修正产生实际的流量指令。通常这是由汽轮机的自身特性所决定,.无需试验整定。流量比例偏置(K+B)和GV流量修正函数F(X2)确定各高压调门在顺序阀控制方式下,调门的开启顺序、重叠度及流量指令。GV流量开度修正函数F(X3)是阀门的流量特性,是流量与阀位的对应关系,需要通过试验获得。
+ ]! K- s: o- e' Q+ o2 顺序阀特性试验. h! K1 h/ E$ G) W Q1 B5 b
2.1 试验方法的确定$ ]; s4 w3 W: N: c
汽轮机在投入顺序阀控制前,运行在单阀方式下。由图1可知,流量指令直接通过GV流量开度修正函数F(X3)产生阀位指令,与其它函数无关,因此可优先整定GV流量开度修正函数F(X3)。2 M* M, G; }6 ^# j
投入顺序阀运行后,可以实际校验各阀门的重叠度,设置流量比例偏置因子(K十B)和GV流量修正函数F(X2)。背压修正函数F(X1)是由机组的特性决定,因此无需整定。5 k, G+ x/ ^/ U- p! `" @0 h3 P
2.2 GV流量开度修正函数F(X3)的特性试验& B& _8 J5 ?6 F, A
DEH工作在本机方式下,切除功率控制回路,手动运行。手动给定流量指令,测取流量指令FDEM与汽轮机蒸汽流量的函数关系。扬二厂1号机组试验时,在主蒸汽压力恒定的工况下(16.0 MPa),手动给定流量指令,测量不同负荷点的蒸汽流量。当流量指令与实际流量不成线性关系时,可以修正GV流量开度修正函数,直到满足要求为止。通过试验,得到GV流量开度修正函数F(X3),见表1。
+ X9 H5 G/ F5 g2 M2 |
# @! ]5 m% K# z [* U 在此GV流量开度修正函数下,得到流量指令FDEM与主蒸汽流量的对应关系如图2所示,流量指令FDEM与主蒸汽流量成线性关系,线性度较好。
5 p3 u9 B/ ~! t6 I- n: w ]: k - k; c% {* A, P) F% s
2.3 背压修正函数F(X1)# T5 U0 t; [, X
背压修正函数F(X1)由汽轮机厂提供。扬二厂1号机组的实际函数设置见表2。
- b2 t0 N; z- H 2 v0 K' M5 \7 c" M7 y
2.4 流量比例偏置因子(K+B)的整定, D# W, W2 l6 L9 g
流量比例偏置因子(K+B)是根据阀门的设计流量和顺序阀时阀门的开启顺序来确定。扬二厂1号机组汽轮机在顺序阀运行时,GV3、GV4同时开启,然后GV1、GV2考虑阀门间的重叠度依次顺序开启。$ R; P8 [1 k% a
(1)GV3、GV4流量比例偏置因子(K+B)的计算
, h7 S" N9 J6 K! s0 x: k 由于GV3、GV4阀门同时开启,因此流量比例因子可同时计算。根据设计资料可知,当GV3、GV4阀门流量为69%额定流量及流量指令FDEM为69%时(经背压修正后的流量指令f1为69%),GV3、GV4的流量指令,f2应为100%,GV3、GV4开足。当流量指令FDEM为0%时(经背压修正后的流量指令f1为0%),GV3、GV4的流量指令。f2应为0%,GV3、GV4关闭。所以由以下计算得:5 \8 w* m+ g3 N$ ?8 k3 Z
0=K×0十B; 100=K×69+B
0 D0 K0 ^/ `1 a: i5 ?5 o: ]得到GV3、GV4的流量比例偏置因子为:) w/ e8 w {7 j) H: U0 C. p
K=1.45,B=0# ?" o! H; Z# B, }
(2)GV1流量比例偏置因子(K十B)的计算因为GV1在GV3、GV4阀门后开启,考虑到随着汽轮机蒸汽流量的增大,汽轮机排汽压力的升高,GV1的阀门流量为21%额定流量,及当流量指令FDEM为69%时(经背压修正后的流量指令f1为69%),GV1的流量指令,f2为0%,GVl关闭;当流量指令FDEM为90%时(经背压修正后的流量指令f1为103%),GV1的流量指令践为100%,GV1开足。所以由以下计算得:# @) ~* p6 g7 N# W4 Z- i
0=K×69十B
, a; q0 I) Q) W; w; x5 \; g& p 100=K×103十B# E4 n; D" W# r/ Y( O0 ?4 D6 y
得到GV1的流量比例偏置因子为:) n0 C; L( M7 `: A6 y$ Z
K=2.9, B=-200
$ l) U. {' A q9 t$ X (3)GV2流量比例偏置因子(K十B)的计算因为GV2在GV1阀门后开启,考虑到随着汽轮机蒸汽流量的增大,汽轮机排汽压力的升高,GV1的阀门流量为10%额定流量,及当流量指令FDEM为90%时(经背压修正后的流量指令f1为103%),GV2的流量指令。f2为0%,GV2关闭;当流量指令FDEM为100%时(经背压修正后的流量指令f1为137%),GV2的流量指令f2为100%,GV2开足。所以由以下计算得:5 X3 c, o5 |+ z" C6 A* ^; g$ c- O: e
0=K×103+B
0 R5 P2 m/ s- H3 j% c 100=K×l37+B
5 ], X d" ?. q$ b得到GV1的流量比例偏置因子为:
/ q" |& E& T2 ?' ~ K=2.9, B=-300
6 B& U& M* g3 L) l: w (4)GV流量修正函数F(X2)设置GV流量修正函数应通过试验确定。确定GV流量修正函数即可确定各阀门间的重叠度。扬二厂1号机组GV3、GV4最先开启,不需要设置重叠度。试验中发现,当流量指令FDEM增至66.7%,GV3、GV4开至52.2%后,流量指令FDEM与实际的蒸汽流量已不成线性,这时需开启GV1来修正流量指令FDEM与实际流量的关系,使之线性化。流量指令FDEM再增加到69%后,GV3/GV4开足,因此GV1与GV3/GV4之间存在2.3%的重叠度,在GV流量修正函数F(X2)中应设置(-5,0)这一点。额定工况下,流量指令FDEM达到90%时,机组出力已经到600MW
5 {/ A; ?, ?0 I8 I4 D" F(100%负荷),此时GV2处于关闭状态。如果机组运行参数较低,如主汽压力、主汽温度低于额定参数,则当流量指令FDEM达90%,GV3、GV4、GV1开足后,机组出力将不会达到600 MW,流量指令还可继续增加到100%。这时GV2将从关闭状态到全开位置。由于扬二厂1号机组在额定工况进行重叠度试验,当流量指令为90%时,机组出力已经达600MW负荷,而CV2仍然处于关闭状态。因此,GV1与GV2之间的重叠度未在试验中加以整定。2 b/ L7 b+ ^; F. x7 R# v+ X- E+ O/ `( a
如需整定,方法与上述相同。各阀门的重叠度函数经试验后设置见表3。! T( k9 u5 k. j9 e! g& q! b$ e# h
* F2 R+ S% S3 h9 r+ u3 试验结果
, i. [' t& t/ D9 D; }! m4 o9 g 扬二厂1号机组试验前投用顺序阀控制时,切换过程不平稳,尤其是当在顺序阀控制时,1号瓦温上升很快,影响机组安全。通过顺序阀特性试验后,在负荷变化过程中,1号瓦温得到有效改善,在480MW左右负荷段,瓦温达最大值,随着负荷的上升,瓦温开始下降并趋于稳定。在顺序阀的切换过程中,负荷扰动较小,汽轮机的振动、瓦温无较大变化,顺序阀控制功能正常投入,机组运行的经济性得到提高。
7 V- q4 U$ c6 r {& ^; D* Y 至今,扬二厂1号机组顺序阀控制功能均正常投用,单阀—顺序阀切换时,机组运行平稳,主汽温度、主蒸汽压力较为稳定,汽轮机各项重要运行参数均无异常。
* d5 H5 m$ |% h6 H 顺序阀时阀门开启次序见图3。
7 k& b2 b* f4 ]8 j" v* q1 a; V . d3 p( z3 K+ e7 g. W
4 试验要点
$ O; \( n- C/ M o (1)校验阀门流量特性曲线时,为了保证各个阀门不同开度时汽轮机蒸汽流量的可比性,主蒸汽压力和温度应保持恒定。% z0 d8 ^- @1 x2 ^" S$ ~6 S
(2)确定阀门重叠度时,在前后开启阀门的负荷点附近应缓慢变化流量指令,获取阀门的重叠度。试验应重复进行几次,以几次试验的平均值作为该阀门的重叠度。6 N( y2 l( P3 S9 F5 ^; ?
(3)试验前,应确定各电液转换器、油动机的死区、迟缓率应满足设计要求,从而保证执行机构不影响试验的准确性。 |
|