|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!
7 V( W. {6 K: x( { 我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?" a z6 p5 W6 j; c8 x N# ^
肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE
2 {: E9 l; D' zC BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
6 @0 @% h8 G5 ~ a4 C2 {* M$ O; KC FIX SOURCE
* ~# O: j0 J+ R) p" D. n .00005 .8 50.0
. E: T9 p/ X. v1 Y- k% e* G 1 1 0 1 1 -1 0 2 0 0
0 D' l" I# a# \ R 10 10 100 100 1000 10004 k2 U! R+ s m# U7 g
MX 318.47
+ g! J1 D1 r9 E# c R R1 RL 10.0
" F v) z& ]' B$ Z+ Y0 i: ^6 \6 U RL 1000.2 P ~5 U) B. L, m/ B5 k9 w
BLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
" @' ^, l7 L* Z% J DY MX -1.0 0.04 100.
" k+ E) u7 \( M$ \% l MX R1 0.06 1.04 100.0 n8 R% B. R9 ~ V/ U) B& g
BLANK CARD ENDING SWITCHES CARDS OF -TC- CASE1 }. F8 d$ {2 Q! i7 z
C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1
7 T7 ]2 C. r' b9 A* DC 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1% K4 J% {5 o& I0 R4 B
C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1
' q: r" o. w" Y0 vC 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1
# R3 X. E- l8 v; oC 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1# ~/ Z0 K9 s% S0 s/ e
C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.1
1 ]0 T& J y* p' p14DY 91400.0 50.0 0.0 -1$ o' l; E. f& L) H0 B8 F
C 14DYB 93897.0 50.0 -120. -1
* q: |- c/ I. \% j& oC 14DYC 93897.0 50.0 120.0 -1
, \: T# W6 e. i" y# JBLANK CARD ENDING SOURCE CARDS
, a5 A1 a% J. V7 @; a8 F$ K8 O) ^ DY MX4 ]; `; n. K4 n4 Y8 G6 M: J( d
-1MX R1
: u+ C# c; u- S1 G1 ?9 {BLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS5 T3 g( O" {' e
14410. 200. DY MX; P" F! ]& j+ R; x: P% j- ^8 v f
14401.000.800. DY MX
+ x0 q3 F0 m" }* `3 c 14401.000.400. DY MX
5 w" T* W D6 j0 D1 ~" ^, R$ Q) ] 14401.000.200. DY MX$ ?$ q& \1 _ Z" p V
19401.000.800. MX R1
* t) a5 @4 O! |) F! K1 s 19401.000.400. MX R1
0 z4 Q) F o6 Z7 t 19401.000.200. MX R1# S0 o/ Y$ j+ ~& ?! h6 |$ w
BLANK CARD ENDING PLOT CARDS
, p: G. n; c G, B/ b2 F. D. rBEGIN NEW DATA CASE0 t9 r$ Q0 q4 b3 y
BLANK
. z) ]! V# l! l) E4 N3 h- M
8 }. x/ m3 X6 Z8 W; }8 g* B6 V ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
% ~! h$ E* K" q6 R/ J! y ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610" m) L6 m6 p9 F( N
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
3 o8 o, H+ {* C5 C: u! x 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300; W, V A7 K t% i* f
--------------------------------------------------+--------------------------------------------------------------------------------
& p! ]7 @ W( q8 l! f+ b DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
3 o- B4 \0 M0 ?2 p; d4 A 0 1 2 3 4 5 6 7 8" w3 b* l1 @9 X* j" U1 e( v: X
0 0 0 0 0 0 0 0 0
" n' ~. P7 G4 c* S! A# g7 X --------------------------------------------------+--------------------------------------------------------------------------------9 r+ R0 B% ]4 z) z
MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE 0 z3 R3 U1 n1 u7 X+ C
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK $ I' S" _: G: _0 i8 \( I
COMMENT CARD. 1C FIX SOURCE : Q, O. \" j! g6 a. x& ?5 I) g* y$ C
MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
$ k$ ~/ v* c7 q) W ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.
& R" J# I4 U) [, L1 H; ] A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING9 V K3 J3 I! u/ P: M2 \! f
THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP
" M" P+ h+ O: K9 l/ T8 w' { MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 0
# u1 F6 g0 r* F& H PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000
- g6 `7 t3 ^0 H0 a SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
a5 ^$ C* `% c SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0 " X. {2 B' ]/ U$ D
SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000.
1 ^! g) y* x) e. g, F; C BLANK CARD TERMINATING BRANCH CARDS. 1
5 C" }& v; G, `5 G$ u9 s* G SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
3 c) z: o2 j, B; j SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100. + q3 y+ h9 b4 Z4 Y/ |; \
BLANK CARD TERMINATING SWITCH CARDS. 1 8 U, f. `+ @1 Q' D
COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5- b$ }$ [7 ~$ u& m1 O
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5
$ U; e, ^, t0 f( Z% p4 r k COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5
$ J: X8 z! q8 O# ?0 j COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5
6 E# F- R) T) A C3 F5 S& S& p COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5
; |" G" K9 H: m: U COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5& |, \! K ^; Q1 G
SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1
Z3 k! R* R6 \5 y! F1 @/ b+ R: J COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1 6 K& h B% f a0 \' k
COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1 ! K- c c6 s# r0 @- W2 Q- B
BLANK CARD TERMINATING SOURCE CARDS. 1
" Q7 F6 @+ [. q1 ` V PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3
* F# Q- k# w8 U7 f4 F, O: x0 ] i2 \, L
% l# q" c2 t: o* ^4 P
SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P& }1 y* N% U. m( }2 o
IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.
7 D: E; |3 H8 z% Y2 `; O/ }1 m BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS' I2 ]0 \; J. I& A$ a
BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q
5 x; r. Y8 x: R s1 ~# o4 n& ~0 u6 |7 p0 y% N% F1 E
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00; k' D8 U/ z# s, o( i
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+09
3 @" p& |. Q1 q1 p6 b( A4 q) g" l) J5 a4 e: O9 t" s2 C' R. n6 A
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+004 ~9 a6 Z, N$ v7 ^& l8 R$ |- @
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00# a$ b$ X: X$ ^: k! ^
1 q, W( _0 c3 F" i4 {
k* H* t% c, {2 f1 z- Y R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00$ ^* T4 I, G. Y& _$ e7 ~) ?
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00! `& P, V4 ^3 s& p
# k' R" v9 }$ }4 K
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
9 @8 r4 E/ U5 s9 {, i4 C0 c' j 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
) k- g" A# q8 q I7 S# x) q: x6 S+ R1 L; H4 ]
+ M( d6 w# `( s7 G RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+009 l* ~ ~3 _$ ?! G7 S; t, B
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00" @. `0 F! x; r1 Z& v
8 M$ w0 ]" ]7 C4 c9 H$ J C TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00; _9 j6 U; L4 ^: f1 k, r9 T; @ V- A
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00; L3 n8 ]5 O' ?
5 V8 { O4 D$ j/ y/ C% y
1 p( e" k" g' ^ TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00& k1 l4 q) x. e
OUTPUT FOR STEADY STATE SWITCH CURRENT
, l, P: s8 ~2 J9 p8 D. m NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
5 G7 B9 t4 A/ w/ v DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09
/ ~6 V, o/ m6 K MX R1 OPEN OPEN OPEN OPEN OPEN
% `. A! i" w6 x
1 c! _, w8 A k) l# V' r+ r SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH9 K8 M# p; ^# V+ Y9 k# C
THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,
0 ^! ?0 Z$ o e+ V6 A WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR.
# {: J D7 I9 x3 R& U4 H+ F NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER2 }! a i) X7 }- @! e( z- l8 z: R
NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.3 A8 S8 R) R3 Z6 u
, i9 G" B) ^1 I4 g) v
DY
2 ?! s5 P4 S+ {7 b# v8 g8 u MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09% ^3 w$ ?0 z9 q9 N4 B
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+00
2 C) o6 z4 q. O: X( d) x CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX
% k5 D7 I+ ?/ N* C* k; o7 ] CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1
8 a8 N, h' t( s# j5 ] BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1
1 w- w% @0 T* B. R6 ]3 c : d, b- \* D4 ~
COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE
1 |; @* q! T3 d% F' d6 a) B POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS ....
6 ]( ~3 ^ U' O( Y) ^* c) a FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)| 6 b# k4 l2 G+ J7 s( }
NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)|
: z1 L0 Q y3 K- L( n NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)| . K, z, [6 w+ f7 d4 j. O( K+ J' N- l
NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY| ! b! w I2 E' R+ u+ h
FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR).
" t9 ~ a E" w+ ?2 {, h BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING| 4 z4 h: t7 @/ C2 ^$ k7 B- E5 T4 j
BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. 5 s, o/ O7 T; J7 F- M
% [: s. a6 F: J$ W0 u! K r STEP TIME DY MX MX " D, w* ~9 q& _: L5 ~2 z7 D2 y
R1
% y; v! \9 P: o L/ V" m% g *** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC." L W' G' U& l4 X/ `5 e
0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00
6 W% ^2 }! t- J 1 0.000050 0.913887E+05 0.913887E+05 0.000000E+00
* C& e6 v$ {+ U) [( Y, q 2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00
8 f" y4 m% k3 y 3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00# c h$ |. ^5 h( |0 \8 Q' R: S! k! h
4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00% f0 n D" t2 e, g; f& G4 x
5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00% R. @6 z1 b2 f" r4 G; i2 X
6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00; w: f6 [- o& {; V
7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00
/ G, [* u5 d% c1 U# K0 N2 z 8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
# c% `, R" q2 G# c6 U. p 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+004 v3 Q) e0 ?2 o2 ~ P
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+00
' g' U M6 A, e- t7 m5 ^ 20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00
& Y3 z8 M+ j& P/ U 30 0.001500 0.814380E+05 0.814380E+05 0.000000E+00! D5 g0 r7 X) \
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+004 F5 p* j6 X6 v
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00
, H- Z+ ?9 a7 M) R' Y4 u1 D 60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00
- h; X/ @/ a# G% h. @) q 70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00
- Z% N0 v: m( q' R4 T1 u 80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00
8 `& q6 f F( J- e 90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00# t/ W- n: k# R, a/ c }
100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00
% E6 ?8 \" h. q& s, | 200 0.010000-0.914000E+05-0.914000E+05 0.000000E+00
# N4 e6 J. a2 @* \1 U 300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00& y @6 q) Z# @) Y
400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
- c1 W" x# g$ p/ Q& e* E: p 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+005 Q# h5 z% c' P1 g. B
600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00( N: |. }: o* t0 h* @" m
700 0.035000 0.140861E-07 0.140861E-07 0.000000E+002 n7 H9 N+ `$ V6 c$ n c
***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.8 i' e( N) {* K9 Y% ^
800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00
- [# m# m' v/ x; P. J$ ~ 900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00
; t8 y' W1 T- K, z- w3 S2 o- j 1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+002 ]$ o1 v ~' o
***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.6 F v- y' V) c( E$ \
2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+037 l, w9 W0 s- n2 M) S J
3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03
; N7 B" S* A( ]& u* n! w8 m 4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03( N- V2 [+ @; n4 }1 G( [* k
5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03, p/ m2 k7 P/ l- w$ S" h
6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
: _5 E8 g) P( k9 h0 Q8 e1 F# H 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+03
6 L4 g( l3 Y+ z; W/ f9 M9 B% g! Q 8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+03
, q( H9 Y; o: K v9 A" d* h 9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03: C+ x" } g( v4 z
10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03
, d( g: m- q" E. W. g 11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+03
+ R# E) N. I% p& \, N' h: e3 m 12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+03
: L5 e l8 y( K! X) D 13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03
2 z2 |! x/ P) z# R# C 14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+03
# b% x/ _9 Q8 B3 E" a# L 15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+03# L% Q1 W8 v" {3 K; V# i, K0 L
16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+031 q: x) J% `8 L$ V0 T+ D
+ J' N; C0 F+ k% L g! V
MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE$ [- E' F1 ?- ?
SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.
. D! T2 G% d5 H$ Z& m VARIABLE MAXIMA :
/ P! h6 O5 y7 v4 `9 m0 k 0.914000E+05 0.914000E+05 0.847194E+03
; z9 \" `9 V! z$ n6 u8 X TIMES OF MAXIMA :
) y9 I/ E) u+ X6 G) j- f 0.000000E+00 0.400500E-01 0.108500E+00# g. d# t2 o# M% ]7 w7 b
VARIABLE MINIMA :3 o' b: H! _: o, P$ t* E: ^, T1 P
-0.914000E+05-0.914000E+05-0.723871E+03
) D9 ~; j- I c- z TIMES OF MINIMA :
/ h0 l9 ]! m( y 0.100000E-01 0.100000E-01 0.208650E+00! e2 R: u6 ^& |/ z( l
, I% i- M( A& N
]4 a( y# m2 Q' S& \, Y; X3 I6 k: Y' J9 N `, R2 X
* @; P- t$ F- l$ V$ @, N' K3 R ** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX
4 L U7 l. U( P. t9 Z
. [6 T% W4 Y9 V$ r: x- m+ n. V
0 h& d2 ~4 o" }
i; P9 F0 S0 n- P ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX
" s" f6 z0 g' p9 N; Y. Q4 f5 y2 S7 J6 L) l, B$ ?
" _0 j# p8 z+ }& F/ O+ I
5 b8 c0 r. g. V* o ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX 1 Z' m( F4 D. H$ j9 d0 F4 p4 I
4 P& C/ R8 ]1 _& i9 H9 m" p* N& }
! }+ t: O" N' G3 G/ j/ m
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX # [6 C7 S- P4 r9 [" T! e1 v' L
8 r& s2 _$ e3 {) }3 r# B
2 X1 L D& n* ^2 q2 ]
$ ?% @$ Y3 t) V, E8 g ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1
: f3 c# S" M5 ?
5 Q3 a; d! Z& Q1 V8 m
0 X! J& J* X. e3 T" x Y# s4 ?* U! L% f
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1
4 ?5 S8 P( L. p4 N1 J# L) B0 i8 Y% x8 ]) X0 b$ N) @8 q m
' D# O* W) U/ A- _, m% M
/ Z% a# ?. m- G' } ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1 8 i6 U: a2 j9 y: }8 m' V
* {! e0 \* i# I6 }$ e9 F+ m7 a& ~6 U$ `. Y9 `* x3 C8 @
, L5 P2 d( U7 X1 `# k BLANK CARD TERMINATING PLOT SPEC. CARDS. 1
# }- ?8 O" _# _; I O
6 _, M4 o4 n2 S9 D. H CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM! h ~/ T4 y1 ], ^1 b
A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)
9 f7 B' @6 E; n ~) Z+ k# d' P SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)
% E! H- _$ v6 r) |& i SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
( q- o2 N. ?# n& j1 O. `. G SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)
: `+ a0 }! n: W* m0 q SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)
& Y# \$ H+ I) `. g, V# D SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)! `! v( Q- Y3 I5 L8 w' C
SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)
% ~5 M: ]: A* m$ p6 M SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)2 w6 T9 ?3 g' ?0 B/ w. a
SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)- o& R, O) z7 s# }
SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)9 {! r/ ]3 ]5 C H( Y4 Z! N* c
SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR)
" r) q2 f: a4 K2 g8 _& _ SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)
2 k7 n7 g; y) u% s; @& X s8 E SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)
& {( L& q0 Z p SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)( y' D, Y, W: K4 b& X
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)
# y# h7 U0 D- Z7 O& ^' C: { SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)
6 M8 H1 k# E+ q7 i; p SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)
/ S" b8 R; y* F' w8 Y5 L! e SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)
) S0 u9 E7 Q }. } Z1 l SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)# a( h5 N' `' v! W5 j* z
SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST): }* K" `; Y# N$ y& m7 F( h9 }. @! g
SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)
0 c7 U; D) b T1 b SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)
, x% j O7 [; d) X2 |- D( k SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)$ I! O: n8 h, v4 u$ ]/ o# P
SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26)
# a( `4 E4 f. X ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4
$ j3 n# i9 F1 q+ k7 g0 L ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
X0 Z$ }5 n* j INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
* J; H1 Y( t" B7 ~" i! Q 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
) h/ v* j1 r6 S) M1 e4 N9 n --------------------------------------------------+--------------------------------------------------------------------------------
, j/ o1 ?% z/ I4 Q! W4 j DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
% G$ C f0 G; m i& S5 a 0 1 2 3 4 5 6 7 8/ D9 q( T4 e+ n8 ~0 x
0 0 0 0 0 0 0 0 0! t) }8 E) E0 t. r
--------------------------------------------------+--------------------------------------------------------------------------------
" q3 j( h9 T7 R/ E, b. O MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
( e2 I2 i! t8 d$ N- @7 \ BLANK TERMINATION-OF-RUN CARD. 1 |
|