|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!; e% Z3 y( {% Q# ^7 k: o
我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?
% {/ j3 g7 j6 U肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE# _, v5 q& g y2 N" R& x
C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
9 v! J& Q `! |/ R8 _$ {C FIX SOURCE
4 Q. T& }' ^8 Y- l! a# P .00005 .8 50.0
: e7 V/ A+ v9 P, K: [ 1 1 0 1 1 -1 0 2 0 0 n8 _ _$ e. W4 c. u% ?3 q
10 10 100 100 1000 1000
9 j2 F6 H! [4 x) K5 Z4 [ MX 318.47
1 R; N, z" R+ I) r8 P3 V R1 RL 10.0
4 j) s% \5 y: {7 D RL 1000.
6 a2 `+ t8 g+ |. i; yBLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
S& U9 T. H* e6 D* O DY MX -1.0 0.04 100.9 \) B5 ^2 m R, C& N* N9 `+ F; b
MX R1 0.06 1.04 100.. M4 v& m; v0 _7 @0 ]
BLANK CARD ENDING SWITCHES CARDS OF -TC- CASE5 k6 k- \9 z( ^; v, \! v" r- y
C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.17 i' U+ w1 J) D# O" N9 ^
C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1) e: r2 z7 ?1 f- @* l6 f
C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1
9 U6 T" R1 G* `0 \8 g! `C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1
% b/ Q: H1 Z1 X3 q7 P/ f Q* m* E1 rC 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1+ z1 O3 K. _+ k6 k3 H% w
C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.1
. \# d- l, \* }9 B& |( g* w$ J14DY 91400.0 50.0 0.0 -1
w# R, [6 N# X& P& O: @C 14DYB 93897.0 50.0 -120. -1; k- H: T4 B/ O
C 14DYC 93897.0 50.0 120.0 -1
2 ]: l- t# V1 n. v, QBLANK CARD ENDING SOURCE CARDS
* r9 I4 R2 i6 `- t, K: | DY MX
9 X' u$ E+ t* R3 I* r8 u# j-1MX R1
$ i4 V' I4 k9 a* q3 j7 w/ g CBLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS5 d; S- I6 S- H9 W! {7 a
14410. 200. DY MX" q5 n* g/ ^8 M, ^
14401.000.800. DY MX+ d1 }# o& i* H0 V* G3 ]* M
14401.000.400. DY MX2 W3 E2 R9 I* S1 [0 K1 ^
14401.000.200. DY MX- I0 U6 J; S% r" x7 K
19401.000.800. MX R14 Q) B9 F! b; d: ~( K* J
19401.000.400. MX R1
/ o, ]9 k! C. X 19401.000.200. MX R1
$ [" U1 D7 X2 P+ v" {BLANK CARD ENDING PLOT CARDS7 _0 j( L2 q H$ q6 g" b
BEGIN NEW DATA CASE
" b- @# c' P% _& g1 fBLANK0 k8 Y" [5 ~' A4 l; F) @: F8 [
, j( V8 N4 X& Y* E* q1 G) c ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
. v H% E, [. d- I ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610 _" w( e2 P: f+ Q( ]/ ]9 v' y
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
' D2 a6 L ]& D6 X5 b6 G 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300( p: C9 X, ?* g0 n" }0 n, z. ]: u
--------------------------------------------------+--------------------------------------------------------------------------------
' q: W+ ?! I, ? DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
% n# O: W, e2 d/ Z 0 1 2 3 4 5 6 7 8
% k- } c2 P9 f0 Y n4 ?6 @1 t 0 0 0 0 0 0 0 0 06 i( B3 B) M# e) a4 o
--------------------------------------------------+--------------------------------------------------------------------------------
+ ^' s9 e0 W7 `+ N( f MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE + @' p- O* o' x( y- b* n0 x
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK ' l9 }1 G9 T0 u' c
COMMENT CARD. 1C FIX SOURCE ' s# F! s' C/ h$ x6 n
MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
# b: v" _- ~( R: g ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.; |9 L: U9 I% v" _7 w( O
A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING& _8 c* D: z$ z# E% T
THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP0 u- C9 Z( q2 G0 }0 ?, I' B0 D
MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 0
. n. M% o/ v3 ~3 |7 y; q PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000
& i4 W) s( F1 l" ~( P1 p l SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
J. ]- o; N1 d; o8 O! Y ^% j SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0 . ?3 b+ Y% Q- l
SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000. ' W% F2 [/ p; q I( i" h" K# e
BLANK CARD TERMINATING BRANCH CARDS. 1 ; X3 r) E' L4 |2 c
SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
1 Q8 H9 |* D: T$ N SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100.
; Q& f; O" i/ ` }" m; R0 S8 t BLANK CARD TERMINATING SWITCH CARDS. 1
" t: b! {" i; @0 h) h, Z COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5
8 v6 T6 W' Z2 G5 u) k COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 53 J( A. q) o: ^& S7 @0 _
COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5 H# o' q) H- ]% @+ {& V
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5
4 M# B. g8 Q( _3 V$ i( d COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5% d2 ]" \: n; K/ b! L
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5" c% ?& s: f. h+ G3 G k
SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1
' h( t W9 \ G3 d# s, r. U COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1
& v& k. P" e2 v7 w& M; m# s8 h COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1 7 [+ q8 y) ^) }! c
BLANK CARD TERMINATING SOURCE CARDS. 1
$ J' r0 m! b6 R PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3
" m0 h& L% \& b7 S# z$ h6 ^% q& R/ Z6 \( P+ ^
0 J; j4 D! ?1 |4 [ G SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P
) A; e' t, G/ c IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.
: V5 H: [+ W- p# l BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS) X- x8 ]1 B; p: ^. ~" E2 k
BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q9 ?6 M1 y' }; w+ Q7 }. q ~
4 T& r4 M1 H( U) ?2 ^8 o7 i
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+009 u# y5 X& H/ p) {3 P
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+09 f9 r% V9 c2 Q$ u' C q7 o" m( b
) H. E$ Q9 e2 e TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+006 g# G5 b% U( g) l( V [% u- J7 M
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00
7 O, Z$ P2 Y) d8 u& E
8 g3 P* [! Q. o- u- }( S [' ~- m
4 n- C# @. R8 Z8 I7 F& d/ L+ ^ I R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
) e+ q0 H4 s! ]8 M& J2 Q3 E 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00# A' L% f8 z$ [, M
1 z" Q8 j. r. i0 Z; n2 V" s
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
( f3 W$ B+ S& w: [- D 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
6 A6 s& V3 `( B' n$ Z7 |
9 |$ l/ V+ w* }+ N. i4 Y
- m& [4 |9 _6 _- r. g1 \- |: D RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
3 S) p& D0 e" g6 u1 p 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00/ U/ X( J) e0 T: e4 T
( F3 z/ b# |9 D% k
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00! _3 x* {6 c8 r9 u5 i
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+009 s; n# X. U: ]! ^% d* h+ o) V
" y) Q% B! M+ x- U$ _( G' J, j% O( z5 P! V* P; ?% ^- q
TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00+ m* X$ }" ?- t9 o8 C$ d6 [
OUTPUT FOR STEADY STATE SWITCH CURRENT
7 M1 g7 x5 U! \8 x NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
. Z% N+ e, ~! R/ p/ o DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09
% T6 w* P7 R! n$ \1 j/ \ MX R1 OPEN OPEN OPEN OPEN OPEN+ [2 p. I6 ]. }9 p) J' q
! o8 \, m" ?) G
SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH
3 v' M5 S8 M) Y: { THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,. T' o+ d/ R5 c, c, {8 ?/ J5 \, Y' I' D
WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR.: s: w7 J1 Y/ `, t2 v9 Y8 L
NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER
. ?& w2 _! t* h S3 n NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.
9 o; `# j7 U, j% s( p% q% P- x* o5 G2 ]0 o. Y5 |& s
DY # ^. D# @+ x; L& l9 n+ c$ D
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09 A0 I) P* ]2 D; \! T
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+006 b) l% y& @" ~1 W" c: L
CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX 7 |, k1 Q6 S! l8 Y
CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1 % R5 x3 P& o. D7 W" t
BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1 6 K7 {5 R3 F0 f1 F, W) V( @
7 F2 O5 U" ^. `6 H
COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE 9 d9 a/ |7 \9 W8 M9 C( @ S
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS ....
$ M- h7 D1 F; C8 x* m( E FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)|
0 p9 b1 e& k: q1 @. V NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)|
8 i3 m4 v0 E( b NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)| 7 p" Z7 N6 J) W
NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY|
% s# {& u5 v: q. N FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR).
! e) B! d& R0 \2 P- K8 Q- g BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING|
4 v' g% u( y& R! N( \8 F BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. 2 I3 J8 m6 @2 F0 L4 f
/ {; b4 v7 G) U! e
STEP TIME DY MX MX
8 z$ w1 u! B f! F R1 9 b4 Y1 a3 x# D0 r, ^. w# ?/ k
*** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.
" `' Y* p5 ^' d. x t 0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00% z {; [* t8 q8 {
1 0.000050 0.913887E+05 0.913887E+05 0.000000E+00
& y0 v! R, K0 b" A, W( D1 {2 ` 2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00. b* R# h% [1 i" x. i/ ~: |9 T9 f5 I
3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00) ^1 t) o4 O2 K' n5 N- b
4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00
" S" N: _' n5 |/ t7 L" v 5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00
, t, A( K7 C& F& _" c2 ?' v: _7 { 6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00
1 }3 X$ \0 h, C0 T( i4 V ^ 7 0.000350 0.908480E+05 0.908480E+05 0.000000E+001 E: ]+ B3 d9 |/ L1 t3 \; J
8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
& ~! Y& ? c0 R/ S" ]8 X5 ` 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+008 g+ v* \7 i9 v' W2 [
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+004 x8 L. c5 W$ o7 W1 H
20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00
/ s9 k( \9 y. W/ z* [ 30 0.001500 0.814380E+05 0.814380E+05 0.000000E+008 O: R4 v1 s, o( `& U
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+007 |: Y% s- o9 P- _! J! S, D) ?
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00
0 R6 j8 Q# h9 j7 a. `. M 60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00
3 y( ` `8 D. p- |( g6 Y 70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00+ y5 a9 |3 `* }
80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00
% G, i2 X% k7 g( n5 v+ B6 }, E8 h 90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00
: G: j/ Q L" N 100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00
" w6 y9 X+ q/ @: R! v4 N 200 0.010000-0.914000E+05-0.914000E+05 0.000000E+00
, T; u( p! C% A0 C3 V- P 300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00
: Z: Y0 [8 g Z; G$ R 400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
4 Y% r+ y$ x/ K8 ? 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+00, R9 d6 n) a$ `3 E4 h
600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00
& V, |, }. L. m: ?3 [7 K& r 700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00
0 c( I" L& n3 H- G; y4 Z ***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.
) V' \& X! ]! P. D 800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00
7 u. A/ z5 l2 i2 Q% y6 \' X5 i 900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00
( [! d% y/ A* H' d3 ~* N 1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00
2 l, a+ O; w) R ***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.
2 y" a" B% d7 a5 N 2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+03/ @4 E' {% [7 `
3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03
+ m: [0 x+ o5 [% z, s5 m% a 4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03; k: X; E- D$ L' _" x& n# U- }
5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03
9 N2 ^6 A; m' M! }4 B& X7 l- \) r 6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
! R+ u# g2 ^) Q5 x S/ e; Y: u 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+03
. y( r2 z, u3 ^ 8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+030 n) n1 T8 c, Y5 I
9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03
* E0 A6 d- P' ]6 O8 I- H# w 10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03" s0 \, W( D8 U
11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+033 b0 u d) q W2 w$ \ g
12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+038 _4 `2 N; T$ ?
13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03
/ r' l0 y+ A6 V* ~ 14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+038 ?/ E- {+ c4 c7 g' B
15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+03
0 r8 ]9 {; h: {4 F 16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+03
4 L% R) L1 z- ^/ j4 r2 [9 j+ G% ~; |5 u" x: D7 M, g3 I8 k
MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE" a: u% f i8 ^4 b# c" H- A5 \
SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.
' w+ m2 p1 S, w5 H; R" h* C; T0 O! s VARIABLE MAXIMA :! N6 e0 t: X) k" E5 T6 S
0.914000E+05 0.914000E+05 0.847194E+03
- p3 X, t2 m* |) ^8 A TIMES OF MAXIMA :, t" z8 m) ]- }+ h6 X; E" C- b
0.000000E+00 0.400500E-01 0.108500E+00
$ l8 D0 i+ F; i: R VARIABLE MINIMA :
9 u" q( |( R8 e+ T1 h& `# n -0.914000E+05-0.914000E+05-0.723871E+036 L: y; l8 S5 A: n/ k
TIMES OF MINIMA : N+ R# ?( X7 m+ e; Z8 Z0 @
0.100000E-01 0.100000E-01 0.208650E+00$ r. o. C# J% R5 @( s
4 \+ K4 o2 E' T2 F Q; g9 U
; v: M0 Y/ A( l
' W0 S O) O7 z# A3 I; p: b: |4 ~
+ M$ G1 q( n( }% h- `$ G
** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX 5 Y5 I0 L6 X' ?$ l
9 J6 s4 a- N- f. N q- M9 p8 W: J3 t% C& f7 \1 ?5 P" y
* W; S- O) r" [( ^
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX
1 c- F W+ } i! k2 [) |$ y# N" Z0 n3 l+ f
+ K9 [6 T4 Y0 h0 b! j Y$ S
" I" O2 x" I& Q, ~; g6 J1 R ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX
( L- o; O* e) E& Z# u8 _ x6 t. K( W F) @0 y
. b/ \( h* n2 h6 {- \% C
' R2 G! w O& o4 ]2 H$ w
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX 6 T1 d; S$ d/ `5 P; @% [% Z1 C* C8 }) t
_. I% a. t4 N( F( [+ W
" o" N5 y& s( j) r
8 X& i4 [. Q8 {, H0 k
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1 0 b8 g1 V( F! Q+ H/ {1 M
5 b' N+ O7 u) n ?" o: F
4 C6 P! h0 e$ B3 `4 |; i8 f
' R4 }" s) R+ a; G ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1 . R* M* {$ s+ ]8 T% R" X5 i* |
' K0 @( [/ M/ F/ ~
: O5 z g- X. C& B
% c( T! H5 q I2 P ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1 / {$ x/ N' ?# R
! p- O/ ]# o5 N$ h$ V( m
( A1 ]5 D; H) F
2 Y" J9 i; d2 @- U! x' z. c' _7 m BLANK CARD TERMINATING PLOT SPEC. CARDS. 1
' u+ {7 a1 Z3 F
- l1 {; [0 {# V1 g0 F' S6 l- O s CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM3 ~' {4 t9 l- K4 Q4 q
A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)$ ?5 H+ `2 X8 \, Z+ H" ?
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS). G% z5 `6 M" r8 q w, J* C9 D" _
SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
$ B2 B( [. ?% n0 m' C$ Q2 u. u/ k SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)3 q) r0 _, M/ {* O, W( j
SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)# ^* `# c: I0 [& b; | w2 j' |
SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)$ C0 ~8 |8 [& G0 H
SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)
, J* \8 P( N* l) }( n SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)
. Z( P: {$ G9 I- Y SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)
8 L. `% J1 Z9 C SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)* d" `( I( d9 M( @( m. `
SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR)
# {3 t, F P- k* J SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)
" N/ s4 D9 G* |' I SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)9 [- P/ H) z) V" y! V
SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)- Q' w, i2 ]/ D, r1 t/ W
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)# @- K, P+ P8 \1 p" Z5 @
SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)) M9 Q1 f& c4 `7 F" E1 N+ U
SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)# Q' P) b* n; q7 J( M
SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)
3 _# q0 w; l8 o% z6 V SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)$ ^! F1 R. ^2 [
SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)
, {/ h- {2 j5 z$ ?1 X SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)
- u) L6 V8 L! O0 Y2 |0 B# k, n SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)
; G- k+ r$ h) E# Y; @( E- S SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)
# Y3 [1 g/ O% ^ h$ z SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26)
% A( n% s2 X6 B ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4 4 ~. ~) J0 c) D
ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 9606107 u- b, \. T. Z% T6 Y
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000: \2 ^ G1 l6 @% z6 L
800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300. c7 G8 f7 ^$ s9 M! x: V, G- A2 C
--------------------------------------------------+--------------------------------------------------------------------------------
6 |. z3 }: I$ l5 n6 N5 m DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER." ~/ N/ Z" j3 U
0 1 2 3 4 5 6 7 8
5 G& D! p3 K% y$ z. u! n1 ~ 0 0 0 0 0 0 0 0 0
3 R! J5 w, `1 o5 d --------------------------------------------------+--------------------------------------------------------------------------------
3 n3 h6 I/ q" `, m- Q MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
- n' a/ y0 b7 Y4 Q% m! o6 ` BLANK TERMINATION-OF-RUN CARD. 1 |
|