|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!
) U+ \# V; c" [ 我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?, n [/ k6 Q" o& z8 |- k
肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE1 Q- `; o' ` x& B0 q
C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK9 V* s4 Y/ F, A) l/ x" K' s! w
C FIX SOURCE6 Y; h C2 l$ d$ u8 \- a
.00005 .8 50.0
# u$ C P* [; ~4 W" I8 E$ t/ u* P6 | 1 1 0 1 1 -1 0 2 0 0
6 z) Z7 |6 _5 A% y4 A6 {! { 10 10 100 100 1000 1000; T6 U j1 b" q
MX 318.47/ l0 N/ S, q+ A" l' b! C: T! u
R1 RL 10.0. a7 v& r$ k! B! v" I1 t( M
RL 1000.
3 ]: L2 L: F6 `BLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
- b+ T$ U7 r5 R5 `) Y# h4 ~ DY MX -1.0 0.04 100.! f5 T' c# w2 T
MX R1 0.06 1.04 100.1 P, R) y7 i7 j8 U
BLANK CARD ENDING SWITCHES CARDS OF -TC- CASE* F; @3 S+ {+ ?% ~ H& [& v, E
C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1
" Z) E5 W( R' ~; k8 }C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1
4 Y+ I8 ^, Y7 P; ~ {C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1
2 [2 w% v- G/ w6 e" ~C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1
9 C) b' J6 V/ V1 m- n& b. dC 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1
' s/ b) b) r) G4 V- c8 f& W3 `$ e8 gC 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.1: r7 _" P7 X+ c; c" f" Q
14DY 91400.0 50.0 0.0 -19 X# A8 D6 Z3 f7 D! P2 |, J
C 14DYB 93897.0 50.0 -120. -1
! {$ K, e; s9 EC 14DYC 93897.0 50.0 120.0 -18 r9 M2 c' C) T4 M! W, u
BLANK CARD ENDING SOURCE CARDS M5 I; Y" J1 e7 Q1 l
DY MX3 n! i' l+ `* Z7 r+ Z0 _
-1MX R1
, w* i* y9 U3 `. Q' i% W: q& v5 IBLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS9 ?& C2 D) D1 x1 P3 Y1 s. U9 H
14410. 200. DY MX
_7 w$ T" u1 p! M, M6 t 14401.000.800. DY MX
+ p# `! r2 `9 e# f5 N9 c 14401.000.400. DY MX
; s) L9 @! V9 l" \3 S/ J0 e 14401.000.200. DY MX2 g& Q1 F4 q! ^! j- p L
19401.000.800. MX R1& q) m" `& R' q# H
19401.000.400. MX R1" `9 o6 A0 C& Q) z
19401.000.200. MX R1
/ M% @; e- q6 n, _2 w, Y- o$ `BLANK CARD ENDING PLOT CARDS: q. i) r8 D# p
BEGIN NEW DATA CASE
( t9 c# I4 c/ T# _' XBLANK, G" W% j- I1 [# d# F. x6 |" u- Q. }
* B9 ~5 e* {) h& N
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
. W$ {/ F/ ~& g9 D$ ?1 F* Z' J- N ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
2 p/ Y: K. T, d0 C8 x! w INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
, p8 z$ E' K' L 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 3000 q: }) f+ _' F% J2 M9 v' F% p6 `9 V
--------------------------------------------------+--------------------------------------------------------------------------------& v( i9 }5 W% F
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.2 v3 s( J( h3 @
0 1 2 3 4 5 6 7 80 ^) O( _! |: @1 r: r
0 0 0 0 0 0 0 0 0/ Z( R+ K% P/ E# {! Y t& r x9 l
--------------------------------------------------+--------------------------------------------------------------------------------6 Z3 r: m& d2 }7 f: w# u
MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE 1 S5 `" S9 T w( D# n
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
2 D2 K# j( g# Z0 o COMMENT CARD. 1C FIX SOURCE / t+ t1 n" c3 M% W+ T0 i
MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0 ! x- E4 J& }( R0 t2 I8 t. v$ ~
----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL./ q5 T. T" r4 V; ^
A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING, _1 B6 M' G$ O }; f9 `
THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP1 a. V% J, U- J' c$ [& M& E
MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 04 ]: ]) g: x* H2 C2 m
PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000 2 n! |; A7 i0 y a$ ^, o! ^! x4 I: D
SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
9 h7 U3 i' {: o1 s! B0 O SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0
6 S. v; S6 I* j5 N U7 z( V SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000. 7 K6 H& R. _, N7 i
BLANK CARD TERMINATING BRANCH CARDS. 1
/ ?/ _1 i, x9 z" f SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100. , T: e0 S T. \6 L
SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100. " X6 S! E% x' r, q' h% A
BLANK CARD TERMINATING SWITCH CARDS. 1 ; z8 r z% `; ~" Q5 u% N) i( g
COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5# w8 Z7 q9 v0 F* ^0 O& `/ I
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5% e! g8 O& n4 m; O$ v
COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5
7 u9 @2 W9 T9 [ y COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5, J X3 H/ I; g) j
COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5 j8 C! L/ \) l M* [) [, s
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5
5 e ~! s* Z- C! \ SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1 ! p+ U' I: i0 Z: I
COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1 7 m N1 t. [, w8 w+ k9 g& ^, ~
COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1
3 t/ }" j# v! a; P& [* ]6 Z. S BLANK CARD TERMINATING SOURCE CARDS. 1 / U" _/ L. F7 X! F2 n
PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3& {0 q( {* W6 z8 O# p3 r
, ]$ N* R! s2 ^ U# F9 A, D! P( V7 O5 S- x9 Y
SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P3 `" x% j1 Y( p* | ^ D
IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.$ [. s. z9 [7 U, z& S
BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS
( h5 @4 c0 Q: G$ r, J A: k( | BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q
- N& c r# ?6 Q/ H" l
& e" ^6 Q' a1 z- l MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00
& t9 u9 z% f$ i9 t) K; o 0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+091 K: Q1 d2 q8 _0 _( P4 G
/ u; C. J( h m' q. p2 p! p
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+00' v( E, w [9 u* f
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00$ H9 a. ^. M8 s/ I/ J$ v
$ ^! m4 x6 ?4 X% y) i. \9 M* E- x
$ Y. g1 Y9 n- ^/ \- M: j7 \& U( [ W
R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00# {7 W/ ^" P3 e3 s& n
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
9 G0 W7 x$ w* U8 }4 z' U" @+ m8 x& C) i, q1 l5 c
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00. L6 a. X; p7 d' l+ G Q% t
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+001 _, k3 W6 M9 O
4 s% |1 j7 O% Q
5 Q+ P% P; _+ t" Y% D RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00& i/ s0 \/ W. U! X/ r# d7 z
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00 Q8 r# Z6 m8 s# x- v: w# L
q* U. d) y; {; j" M9 y9 l TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
8 s) ~9 A* f, ^: Y# a 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
8 |! M# n8 } z/ g& v8 E r( w& ^1 E2 [$ E/ d% B$ N
# w n s7 r6 [
TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00! ], f. b* w$ b
OUTPUT FOR STEADY STATE SWITCH CURRENT
" h' a1 F2 T9 T! S' |' M( `' G- V NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE. p) F. A5 |5 \' R
DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09
2 }7 R b |4 Y) w2 l" F8 K MX R1 OPEN OPEN OPEN OPEN OPEN s2 `" x+ i1 C
8 D/ L# ?6 m5 [; n- B, R/ W# k! w
SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH2 \8 y& m8 e8 Z( r# B' c( {9 x) ?
THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,
. ]& c$ e5 o9 ?9 ?8 D! A/ } WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR.
9 t5 @ ~7 t! z# W8 U NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER
7 s- B! k# v) Y' q7 Y( O NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.( R8 ?8 p; O5 |* u, X
5 p2 D2 g; q8 b. S5 Q! M
DY
8 S, h3 l# E1 y MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09: ?3 x- \8 n; k% w) [6 k
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+006 a& @7 F2 I9 i. C" u* x( R
CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX * \2 y, o( A3 B! P" U
CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1
?# E- L) T( ~* R$ [5 \5 Y, B BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1
q* `- U! j) x# @( D4 x* v1 l& ^: e ' S5 B0 {9 ?. S! j+ G
COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE 0 g2 L) Z2 i, B8 a$ G6 @ F0 E
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS ....
3 K: t& l' }. N% D4 p# b FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)|
* ^( [& C# i2 x9 v" m NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)|
: u5 M! c- ^% \6 m- B$ w; c* \ NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)| 6 ?9 L7 j @$ }9 C. T
NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY|
( G+ \0 H) A- q P% k/ G FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR).
! \( z2 R4 b9 c! j1 t7 \: E BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING|
0 d4 _: d' d. p7 g2 a: L BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. 6 ]' K1 C) M. S7 t- P
3 V8 ^' o. U- h# D! V T
STEP TIME DY MX MX , a' f) }- I- p" ]
R1 ) x e' `6 Y3 n9 s g% m+ f/ w
*** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.# B* x" c! Z+ `0 `0 ]' k
0 0.000000 0.914000E+05 0.914000E+05 0.000000E+005 Z$ N: |- u: f( d# a, v& M O, P
1 0.000050 0.913887E+05 0.913887E+05 0.000000E+00
6 y j: R- l6 f 2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00; E% A3 N. J. K$ z: z
3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00) y' o# ^' W0 ~ C' f
4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00
/ F# Q( l% D1 | n: ~( C 5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00" D1 [) W7 h/ Q5 M7 L5 Z& e
6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00
* l- B4 G. @' C 7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00
. G; c' r, m6 J; ~ 8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
* S8 F3 r/ B( Y+ j9 B5 t 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+006 S# M- i- I" k8 A
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+00
: J7 v$ I# {+ G* W$ F+ s$ } 20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00- G# Q- d; L1 m- r
30 0.001500 0.814380E+05 0.814380E+05 0.000000E+00: |/ S; B7 ]! r$ M X, f' v
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+002 ^# q: a$ N6 e0 A* |0 [
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00& ]0 |5 D+ N* l" C& [1 U
60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00: X$ V' {. O* y
70 0.003500 0.414947E+05 0.414947E+05 0.000000E+007 g E8 p) _/ x: R, d0 m; m- Z
80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00) J' h' Q- _8 E# d1 c) `0 W2 C
90 0.004500 0.142981E+05 0.142981E+05 0.000000E+006 J. T7 v- [' f2 H5 `+ K# {: K
100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00
% L( G" p+ N" t9 w; e( t; }6 h 200 0.010000-0.914000E+05-0.914000E+05 0.000000E+006 a) ~0 h* W; R
300 0.015000-0.164038E-08-0.164038E-08 0.000000E+000 `5 e6 H$ f M; T* w- }
400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00: x) @$ i( m5 _' g+ {% J$ X4 e
500 0.025000-0.589812E-08-0.589812E-08 0.000000E+00
, i' ?3 H0 Z3 j( ?9 X 600 0.030000-0.914000E+05-0.914000E+05 0.000000E+003 f2 |0 j% G& o8 m. W% F2 H' p
700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00# b6 @' y; X* L/ Y
***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.
9 ~) h' z9 V: u N 800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00
& R2 j& g: m; s' T4 D, [# ` 900 0.045000-0.223552E-07 0.914000E+05 0.000000E+007 n: D, H ~( u0 J
1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00" g; j% a, x; n2 u7 R# `, ~
***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.
! ~/ ~4 r/ o8 ~ 2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+030 z; }4 S& e, w, t
3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+037 {0 |. u8 ]- l: m! a3 \
4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03
, Y4 D% M3 G4 f0 ] 5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03
5 ?& H# v1 U/ n 6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
" X: Y# O E/ C2 s2 g 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+03
* v, P0 Z4 ^( x @; p/ L 8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+036 `, T8 ]& i& l7 g
9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03
6 h/ D( Z0 D; U: [, j) ~ 10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03
% g6 o: }$ Z' q 11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+03
) Q1 H u6 N' t 12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+038 d3 t8 b. g9 w
13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03
, b2 o" N$ l# W- w; g9 U 14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+03
2 Q4 G! p8 m' ^: d6 ^, m# H+ m 15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+038 i0 o, f4 R# G: w1 @
16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+03
0 D$ S: J. J/ b1 T1 C. e
0 j, K* j) f8 k6 m. \ MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE
) C- A y# h( m2 ^: F0 B1 Q SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.
; t6 I; g& }; C6 O* S7 h0 ^7 T; \! D8 g VARIABLE MAXIMA :% U& e9 ^( c) ]; `
0.914000E+05 0.914000E+05 0.847194E+03
$ g1 C2 h! \1 H# ^, s1 N TIMES OF MAXIMA :5 w$ W7 p! E6 S
0.000000E+00 0.400500E-01 0.108500E+00
$ s& i# |) F9 K* {1 J: F7 _. p9 v* J VARIABLE MINIMA :
9 u/ A$ o( b/ a# a' x' M7 A -0.914000E+05-0.914000E+05-0.723871E+03
% s# j9 ]9 k5 j+ B/ [' K TIMES OF MINIMA :
. i1 W* u) K9 K+ K6 U2 M 0.100000E-01 0.100000E-01 0.208650E+00+ R- C# @( ~( C* I7 [
" f, Z7 P+ D/ x
" k$ i0 X4 D* }" f- w; K1 t- q* [8 W4 _$ z
( R: a% x% o: I; s% P ** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX
1 Z3 |% E3 ^) _' ^2 T' V( J7 r$ J6 ^; v- v+ _* o
; S5 L8 ^9 ?2 o/ U! _! r- c6 Q: ^( e* L# }9 k
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX
9 R1 s4 j& D; K0 E2 m: ?" s9 s
: @: i2 I) t& v( l' Q1 t
! g7 L% i) w( \# T6 q' K4 G8 U ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX 7 D$ X( a) l O; X1 q+ o6 R+ Y4 ?
3 u+ N% ^/ X3 T& x' J) f
. r9 t! f3 G" j" q0 B
! L0 l# C v. A" z1 |3 x1 c% p ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX
5 M9 Q2 E, L1 h% K
, f: E. I! O0 W" j& G( t) r5 L& ~) b/ L" |/ v
( h# O5 |, ?7 m% G/ @6 T3 p
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1 # z+ {6 @+ H% L, h& V& J5 a
3 \: [6 w+ s6 J+ t U! i2 |
( v- S K4 |. i: S; T$ M
! w' W, j- P1 i0 U& k1 S3 P ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1 ! ]: D5 `$ g2 Q: y
" V: _" M% | I+ h% ~* Q2 ^
4 g6 b8 U2 r+ T+ p
# d1 s0 }, p0 S# h+ h" @ ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1
' h8 H. y/ p* m$ c' w, r0 h8 N5 \1 K5 r$ J/ u
7 q" }% W( [. n/ j) W1 @$ T. z6 k, U
BLANK CARD TERMINATING PLOT SPEC. CARDS. 1
9 v* C& A/ ?) W. U8 }) D. e4 _& n) q: M
CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM
, Y9 |! m3 {8 s/ q9 Z% k A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)+ l$ f, w1 S5 \$ i
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)+ }4 C0 u& x9 e$ E! r8 ?
SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
, _, C1 S w- \; u, l# d SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)( c; G# V& z3 R- x. Q7 S
SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)
; C. J$ z* W0 _- |! o% f* r SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)
6 b+ [! r" L7 h7 Y SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)% e) }: I7 u d) o7 r' ?
SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)
. x6 p$ B& Q& a' J u SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)
9 Y4 Y; s U! B- c5 Q SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)
5 P. \' d1 A1 g( d } SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR)
/ ?; q3 C. O. d" j1 u. W SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)4 O Z! p8 H9 r% {# G2 w
SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)- H. R& M c8 N. ~8 `
SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)
' ~! {8 t9 }# D SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)
0 d! C! y6 K. U- m. r SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)5 O# _* X5 m: j9 i
SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)1 j$ @8 d9 X0 y- o8 F/ C, B
SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM) k" L5 F. t1 k
SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)0 [' D2 g+ u: e3 a1 f5 b
SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)
7 M6 e- ]) g5 x SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)1 r) {! o! T- v+ I( i; ]1 o2 Z
SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)( u/ k4 o# s& z
SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)! C- T: j$ U0 Y4 i$ t
SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26)9 K9 z+ r1 _9 l1 Z: F
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4
: u" G% u* s& C( w( L1 T8 j3 a ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610- X8 B9 {4 B3 {, a
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
* ]. P, w+ `8 P6 P- G( { 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 3005 N4 }9 S4 ]/ D4 R( l5 s
--------------------------------------------------+--------------------------------------------------------------------------------9 ~) J2 o' A3 [) c0 e/ E
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.9 B- g8 X3 l2 ` J# ?
0 1 2 3 4 5 6 7 8$ T' u8 i) W0 r; d+ f4 o: S7 d* ~& h
0 0 0 0 0 0 0 0 0
- b& H" u, ~' p% A+ y \ --------------------------------------------------+--------------------------------------------------------------------------------
( A; ~- s+ ~. L* U9 l4 A. H MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE 3 z6 z( ^5 j( x4 y/ {
BLANK TERMINATION-OF-RUN CARD. 1 |
|