|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!) h# d& r4 e; d. L( K- x) [
我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?
: ]8 F U) X: [" p肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE8 @* `4 `* x- ?3 _2 I0 P
C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
8 a* D$ N# n# n: l8 P, Y* {1 pC FIX SOURCE, d. `9 ^+ G, @# p- v
.00005 .8 50.0
& {- T6 b: E8 a( C 1 1 0 1 1 -1 0 2 0 0
" P/ u; z/ `8 g* L 10 10 100 100 1000 1000
5 a# X, |5 G6 O; @+ D MX 318.474 s/ o9 n Z7 V% m- x+ Y/ R! s
R1 RL 10.0
; t7 {; q# }. ]! s3 r a& j RL 1000.
$ i) _. B2 V4 @7 S3 V& C; N# CBLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
2 }) N4 }- ]8 \3 j, e; k! W DY MX -1.0 0.04 100.
+ B+ J# @" B+ _ M: O7 c F: z MX R1 0.06 1.04 100.
* p# z( m$ _' d3 L9 K4 G' D, JBLANK CARD ENDING SWITCHES CARDS OF -TC- CASE5 H, \6 ~5 h8 e5 d7 l* p/ ~! s
C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1
8 s# P* H& ^% M @- ^* l2 _C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.11 ~; d& ^4 r1 l/ G: N
C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1
7 t+ |: f3 V+ ]+ w- ^' y# mC 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.11 s8 `" a* f* J$ J
C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1- k! \$ q$ l8 f/ \6 [* p
C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.1
+ t2 d* `+ l- ~2 Y* V8 s: [3 B14DY 91400.0 50.0 0.0 -1
5 q) \: E1 |3 Q' H0 xC 14DYB 93897.0 50.0 -120. -1
# ]" j% }7 ^/ O+ lC 14DYC 93897.0 50.0 120.0 -1
o3 G& U `3 Y7 ?9 T$ V4 z! S1 qBLANK CARD ENDING SOURCE CARDS* X5 u1 m, Z m% H" L! R( n" D) M; f
DY MX
1 z, `, V- i( p) b- g9 G0 }. a-1MX R1; Z9 N7 D( I" }# K9 w6 I$ q, K
BLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS7 N4 b# l m+ n0 ~
14410. 200. DY MX
$ z( ?& t4 B7 Y! G 14401.000.800. DY MX
{3 W' L# @+ B* N+ `% N. z 14401.000.400. DY MX
) E' C! N" g# j/ V: B! g 14401.000.200. DY MX' t0 m; s. c7 M' o
19401.000.800. MX R1
6 p! W2 a/ E. r# ~, \ T# y 19401.000.400. MX R1
/ T) X0 ]$ l" z( x9 w7 t 19401.000.200. MX R1/ `( }" {; P! a, z
BLANK CARD ENDING PLOT CARDS; w7 c$ e0 D U3 I) l5 m H# s
BEGIN NEW DATA CASE
" g. s$ q# i" G5 _# Y& PBLANK
' p8 Y" N5 \1 z& T( U( L4 O/ P: c
; M$ M/ D8 W% E2 ^ ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
" s5 q- V0 P3 W. Y) q# A0 E3 |7 {: X0 m ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
+ E$ Q# _' K: |+ h0 f' G INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
& c+ o3 f' v3 x4 l& L( e: g2 M; |: u 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300: A4 G6 N& \) I
--------------------------------------------------+--------------------------------------------------------------------------------: D5 R7 z; A4 D( ~5 [: A! N3 K; u
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
: w8 ~5 _% G2 b( `! A) R" P8 l 0 1 2 3 4 5 6 7 8) _; {2 c. r4 z7 ^% e; W9 W; b5 X
0 0 0 0 0 0 0 0 0
" `& O& ]$ X! V- Y3 j9 C --------------------------------------------------+--------------------------------------------------------------------------------
( z3 M% v8 Z$ r! _% u MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE # i( Z2 W- K) Y2 M- {' m+ T
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK + @% M" t9 X! h5 J
COMMENT CARD. 1C FIX SOURCE
4 `% ~! f8 ]) ], ^4 q; P- U8 p7 p MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
/ [( S+ p% g' u! v& x$ B ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.
# t4 J7 h) r. f( r* Q A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING
0 Y; \% s& j! E: I2 g' i THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP' n* K& S: {, j% [" W! _. Y
MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 0
$ @( s- T/ I1 L, @9 f& Y, M$ q$ t PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000 & i5 s' A, Z% q3 [& Y; n p( W
SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
7 d0 @6 T" T' D6 k0 R SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0 3 ] b8 s7 N3 Z. R, v$ }' I& I. a5 p
SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000.
, p- z7 e/ v, i) n BLANK CARD TERMINATING BRANCH CARDS. 1 ) m [ C- H8 f6 M6 Q/ Q( X! B: N
SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
. F1 N# o# F O8 X$ \9 c) ] R/ O SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100.
' Z& c* s d; u s h) M, M, h BLANK CARD TERMINATING SWITCH CARDS. 1 , N" B0 ^! s# |: T6 @2 |
COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5
; s# y& K7 U6 b D& `9 Y COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5
. Y8 b+ O; v1 J( | COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5
- n6 A q7 v2 r' K& z" a( d1 O COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 59 R9 u5 V/ g3 C. q7 \! g% y# o4 |
COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5
8 M/ D" P7 x" F) A7 d( K COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5- l: I; k# |2 F& D6 `
SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1
9 v9 q% |) v$ ]; r* \ COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1
; C( h1 f) j" }% l: q COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1 % z: u4 r* t& m
BLANK CARD TERMINATING SOURCE CARDS. 1 4 X% S5 C, p i* p
PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3
* Q% B) q- `3 J5 I$ R1 s b+ f1 \% M- z/ ]; d- z, [
, J7 G! G' I& B) L- p4 ? SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P
& V2 ^ W6 q* h: _2 s8 |# r% M IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.
& g, V6 y' c+ W1 J0 y: |8 g9 y BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS
7 q( q+ h f: m- G BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q/ ]. R5 | d; I8 x
) d/ h& o# |/ E. w MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00
4 Q! G+ p& `8 B0 c$ h$ r 0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+09( l5 h/ B5 [, U) s/ ]
) v0 g$ h- A' c/ v6 p/ S# k TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+00
% V" ~; W! X5 {# T8 I5 g1 x3 U, G 0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00
; ~# |. f6 {( i% n8 m s& @
; D. j" |/ ~! Q5 R4 Z9 L2 `- N
/ g5 e! z7 _5 P% w R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
, w$ F0 t5 l# H 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00) z1 V) a0 z5 l9 z3 D
) b( h" k3 G, x
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00$ X! ?/ g2 u1 c0 l6 V- k
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
% _5 v, G7 ~4 k% F H; w6 e' X$ x9 ]# M3 T) z5 T" A$ t
4 l( {$ f: \: t
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00% }& _% d8 T0 x I4 v' Q+ m
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00. Q, |% c6 x* }- Z& Z$ }' o
, l8 `# a2 }5 ?5 v
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
* A; X# f a- l$ w M 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
4 U# v+ ^$ G! d2 D( E# L3 u; @ a: O5 l9 ^) D
" [3 g: Q9 a, o' F: q0 _5 v7 W/ ] TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00( s1 _+ M1 K2 w1 q' z
OUTPUT FOR STEADY STATE SWITCH CURRENT. H% n- R* W) \$ a
NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
' h$ D9 C/ w) q5 s y DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09. T* ~# a, C& _+ s) M2 w
MX R1 OPEN OPEN OPEN OPEN OPEN( s& U! r& A9 J, h* i
- B+ B' `4 O, v3 X; {% w7 _ SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH
; K* k' ^6 X/ D THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,
) Z0 Z; c$ N6 X& t0 ] g1 q: M' I WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR./ o: D9 H- `' u9 q- _: e2 e
NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER
! c0 r" G& |# v; C t0 o+ N* H: h NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.5 y4 `- @) y% A
: `; i' Q# l0 q, I6 d- p9 ]% e
DY - x, d0 g" ^, e1 e
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09
! `( X0 ], a" G$ i 0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+003 ] w: W; b. Q8 [
CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX # Q! o& Z; R Y' K9 U" O( v; t$ a
CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1 ; B" R! d; n) X7 w" t( O8 D
BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1 i2 y% e& l" P& V" [8 e/ d6 x
7 N# R: h- }) ]$ b e% E1 M COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE 4 J# V& K! \2 @5 K. D: S. x- G k- R
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS ....
% X% d% ^( W% j5 _6 R. G" F* g$ y FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)| {9 B( q$ C- b. w( Q2 C/ k ]
NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)| / ~0 p' c& b) v. z( |- f
NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)|
/ S" w0 d; @9 b NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY| $ y4 e4 \1 a/ H. v7 w
FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR). ; |+ `- W, x0 V, A8 z
BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING|
: P) J% D j1 r e' Y( x BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. - `+ F, P. I$ P0 G2 R- ^; D
/ O& c8 F2 ^+ Y5 g& q2 l2 | s
STEP TIME DY MX MX 7 [6 i0 |& O$ W6 H0 X6 R0 W" F1 s, U
R1
% p* g% ^# o; u1 H6 |! t" Y9 y *** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.
( E1 E- h. C2 x$ F" ?+ E 0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00( p+ c! q/ X6 u
1 0.000050 0.913887E+05 0.913887E+05 0.000000E+00
0 Y0 b- H8 M4 T3 U* g 2 0.000100 0.913549E+05 0.913549E+05 0.000000E+007 d3 Q) i0 A) O8 m" V, K
3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00- A& a6 [( p; ~; [
4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00' c# i( G* r* N9 B4 h2 y
5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00' [& B0 N. V1 b: K0 R
6 0.000300 0.909944E+05 0.909944E+05 0.000000E+009 \; d% F2 `- b y3 d2 O
7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00
' q# k, d: A; U {3 F 8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
" v: C& w& i$ S. { 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+00+ d1 r/ O' \2 w& S3 y9 K
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+006 d, p% [8 o- h
20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00& l/ x; Z1 J8 a4 e6 j. P9 k
30 0.001500 0.814380E+05 0.814380E+05 0.000000E+00' J d c% X2 f
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+008 N) U$ X2 _8 E, T" ^ k5 P
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00
4 E4 b5 \: E9 M5 u: A, _/ `- L 60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00; K' T9 w# ~( F! j2 [
70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00
! |; M" F3 P+ B% Y E 80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00
( U$ r9 Q6 w# z9 P) q7 x 90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00
# l9 ^( R! `! Z3 U1 u5 U- r 100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00
0 [. j9 [2 [! E9 z1 E 200 0.010000-0.914000E+05-0.914000E+05 0.000000E+00
8 ?0 {6 Y" U$ X" u; X* z$ Z5 J. M 300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00
$ g' C" X$ d# T2 o8 m 400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
0 R; F9 {- I0 k4 l 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+00
1 Q, O& }* |* v( n 600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00
* M; \) D0 M8 ^( X 700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00$ N2 b: m: v2 Y& {2 c3 N
***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC./ X: ? c& P! r) j% x
800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00& u3 {8 g9 b8 j8 D) p2 j
900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00
. O. L/ _! q& C o U3 y 1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00
0 ^! o6 [ m& \; ^) @ ***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.7 H$ h* m, @8 o
2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+031 P+ R4 Y5 Z% ]8 G" R
3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03
" n( b: ^) D% }! H# H: G& c! L4 m 4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03
( z# ?! q3 n- q 5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+038 ]9 ?% }2 o1 J) |8 d4 H/ P$ @
6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03+ r4 F6 o( g- z; g
7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+03
% n9 |/ r) ]) ^4 x 8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+03
0 [ t I4 P! h1 l 9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03" I7 M6 j8 Q: i L% H, q
10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03
* ^ B+ S) q) M3 O7 J+ n/ U 11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+037 {% u4 M6 }: P4 ^9 Q3 g
12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+03
; }; p- v* A% { 13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03
; u, v8 l# u3 ~( I* S 14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+03& _- B/ M" [& `- j& L
15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+03* l( t2 B0 W% N$ B {% U
16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+03$ |" h2 U# m9 [; p% a* G
( P8 f% p, l: { MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE
7 l' l. H% @& j- x. w SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.
9 v1 n4 V, Z9 l VARIABLE MAXIMA :
/ R) L3 l4 @$ r/ }4 D8 e. M; Q 0.914000E+05 0.914000E+05 0.847194E+03: J3 m* e2 l R
TIMES OF MAXIMA :/ }# N: N4 s: S% O1 J' c5 E
0.000000E+00 0.400500E-01 0.108500E+00
3 B9 L& q+ t, ?# m% R VARIABLE MINIMA :2 k5 g1 a5 k# o- ]$ M
-0.914000E+05-0.914000E+05-0.723871E+039 V6 x- Y; {, V1 i) y7 t/ |
TIMES OF MINIMA :
8 ]* ~/ g2 y+ Z9 x* ` 0.100000E-01 0.100000E-01 0.208650E+00
{+ X9 ?% W, m& W3 S1 x8 B/ Z) n3 |
" x2 d" T4 Q2 z4 R) i1 z( k
# f- a& V V+ s- L5 s" ]3 y( p
2 X% O7 |1 Q: | ** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX 8 K c, {0 k" E( y: W
) Z5 p2 e, k ~+ ?$ o6 s4 c9 x P2 d! o' W" X' A, d9 ]
0 E2 ~. q% k2 N, G1 B ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX ( z, `+ @+ `3 y5 D, z
' M& i& ]' }* a" J' f \+ V
+ I3 u, z+ u8 R- i7 c8 T# K3 ~8 R1 c* o+ a2 Y/ _* ^. S
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX ! J4 p) p. u. [' X
7 Q0 I& m9 o2 z8 l; q4 u
+ v+ d4 t Y9 M! b, C3 Z& M; R2 D
2 \5 q# p3 {, E* F) k/ ^6 e
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX
9 o; G- m% Y& u
+ V# U0 w! w F \$ I" r; n4 @! r6 C B
: j" z, |( f+ q1 o2 v# B/ @ ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1
+ H% F8 f& K. b
+ {, ^1 B5 \* l' {$ r3 m- Q# a7 s# U- O9 | B
# B% l& E% j4 n0 ^
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1
, d! l! ]" v9 R' R* l- |8 ~- a& i" I; s. o6 y" l- o( f6 B" f
' M6 }) i8 a$ s/ k6 G) T" U7 c# c% }; l
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1 ; t" ~6 _9 y2 v! ` _4 G! B- A/ f+ w
) q5 O7 K/ J/ ]4 _$ K. f* g- i; v0 ^; Q9 ~
5 _6 W! Q: u$ P2 @ BLANK CARD TERMINATING PLOT SPEC. CARDS. 1
: k6 \( s7 R% [1 f, @
0 `+ k W, I6 s$ Z9 B1 r* T CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM
2 D9 }! N1 A: {: d' ^ A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME); q. `& L4 O) k# j9 \4 K
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)
+ s, t/ A" \" j6 b2 n3 d4 V SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
/ j0 g# R! L' @! A SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)/ S$ y+ X% j/ |3 i
SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)7 d. t" u; E% |7 D" w" s) R! d
SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)# [ |' \ V. R( i+ `6 V f8 J
SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)6 l. j! M+ V/ l* S3 |* x
SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)
1 T3 G& H. t; U7 r+ `+ f SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)
# Q" R/ h- T( u7 v% D+ i2 h$ r( P2 l SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)
1 m1 M$ m( E* H SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR); x- E- s5 h: A6 }5 Q. \" C, d
SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)- o: T% L+ u: q: r7 l
SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)
5 P2 W0 z3 N& S5 ^ SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)" q0 y/ l. I' i7 }$ S
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)
8 P- P' B9 p( k0 P0 g& V2 H SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE): P7 W3 u' y: `7 o
SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)
7 d! j% z8 k" t- `! U; f SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)+ y7 f8 H- p+ W
SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)
+ ?) O* f; s- v' @+ @( H3 Y; t" z D* Z SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)
) J, f4 X8 N+ V6 z SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)
% j( ~7 V. q, e2 V& V6 P SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)
) r x" _+ s8 P2 x SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)
# s" g+ s4 A! a/ p! x ~ SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26): b: `( M1 @7 n* y( G. d. [
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4
5 m; [' V5 W$ v, P$ k. ~ ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
1 g! u9 g% b4 T9 k7 H INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
' z6 w* B2 U2 Y* b$ z% d 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 3005 j; l8 V3 F& P9 n0 T, G9 @
--------------------------------------------------+--------------------------------------------------------------------------------
; x; j4 [6 [+ E. x# O3 b DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.- [/ w* W+ m2 u9 a; z; F
0 1 2 3 4 5 6 7 8 k! {; l. B/ o% D* k4 F. i3 g
0 0 0 0 0 0 0 0 0
4 v/ r- e& |1 E! O' ` P --------------------------------------------------+--------------------------------------------------------------------------------) k' W) o' A' p! `/ }
MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
/ v. P6 D! ]' K" ` BLANK TERMINATION-OF-RUN CARD. 1 |
|