|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!$ X# o) @# b$ x5 T. A
我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?
1 O2 c, n. }% D' C肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE
+ I- j: p3 I0 E4 E0 J. bC BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK: M* G# s7 l+ C8 T8 H, M3 H
C FIX SOURCE
. s4 U# l$ U( c: e .00005 .8 50.0
3 {* v2 s& a7 O1 _/ X/ G0 F, x6 B 1 1 0 1 1 -1 0 2 0 0# c0 K J2 s* p4 u5 [6 M% ~) ?% f
10 10 100 100 1000 1000
- C' V" `! d: K; g MX 318.47
& C) l1 O2 {3 Y1 M2 x/ J R1 RL 10.0, c( q6 x( ?2 o( E0 n$ g5 N: e
RL 1000.0 t8 }# G$ x. z" D- K9 P+ s
BLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
* V4 R- d3 A+ A4 I DY MX -1.0 0.04 100.2 O$ D2 p. a+ a) h
MX R1 0.06 1.04 100.- j3 }) I) |& c/ F% s0 x
BLANK CARD ENDING SWITCHES CARDS OF -TC- CASE" s7 ~6 z+ t+ Y: F& f
C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1
# i( W! T ~7 ZC 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1
, F1 d9 b; _' ?1 v0 iC 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1- X. [0 Y% Q/ L' U; t
C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1
9 y$ A3 a/ ]+ J& B l, a2 U% pC 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1
& z4 z" E3 h0 S3 y% {9 ZC 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.1$ L( M, b. Q/ `/ G4 a! I1 H1 ?
14DY 91400.0 50.0 0.0 -19 A' j3 M6 o+ g! C' a8 }; r, b4 _
C 14DYB 93897.0 50.0 -120. -1
, u2 Y' t/ t$ iC 14DYC 93897.0 50.0 120.0 -1. ^' h$ l5 e# S4 S2 n
BLANK CARD ENDING SOURCE CARDS
E/ h" t4 H# N9 S7 `, u! Q/ n5 w DY MX/ K# o- g7 Y9 X- K
-1MX R1& [' l; g; }8 e" y6 q9 Y3 a9 v* a
BLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS3 v/ q5 P) b0 [9 z; s( b9 ~
14410. 200. DY MX) }* Q2 \. O. C4 ?
14401.000.800. DY MX
4 j6 e3 _- F' _& N 14401.000.400. DY MX; R' ?) N9 H q3 n u2 y7 K+ V
14401.000.200. DY MX
( p; A5 N" U1 ]( O- V 19401.000.800. MX R1
# G2 I5 |) V# a8 F4 U 19401.000.400. MX R12 N$ B# c2 O0 o! P% o
19401.000.200. MX R1
. _9 [: R ~3 w2 ?. N6 EBLANK CARD ENDING PLOT CARDS
2 C' [1 x2 [5 Z# U* IBEGIN NEW DATA CASE
3 _/ U B5 b0 }BLANK
/ d2 `7 T8 I% p: \/ q+ J6 F+ R' C7 {* C& f9 ~9 _7 U
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
# \" M1 ~( ]5 ^$ X ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
6 p4 d8 C7 G$ @- A( f INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
7 P$ [+ ?+ G' y9 r 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
# N& Y& l. O9 W& G0 o/ c1 @7 l ^ --------------------------------------------------+--------------------------------------------------------------------------------8 ~" S$ E/ I0 a* R7 `
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.3 E( O* z, E1 r! v W
0 1 2 3 4 5 6 7 8
r6 ~5 Q! Z' S4 s' H 0 0 0 0 0 0 0 0 0
& F% W7 T7 N" h3 w2 t: {& b --------------------------------------------------+--------------------------------------------------------------------------------
, s5 W+ K$ i3 ^9 N6 L MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE 2 r# v" E7 I) ]+ R5 J
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK 7 V* D5 U+ Z; e" T6 |& i
COMMENT CARD. 1C FIX SOURCE / W7 u) H- k6 K* w! E4 }
MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
/ K. J$ Z1 ?& ]1 l2 q, ?( S. w ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.
/ x% ~" u2 a. ^% a0 l6 V' L9 N A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING
}) l: M* n6 J THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP
) y) L6 r" e6 g2 n' e5 Q MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 0+ G, ~) u- Y, R2 t( F
PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000
6 j: G& t x5 r; E) w2 z1 ?8 Z SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
$ Y9 n3 ^1 a7 @ ^* M& P4 I' g+ y( ` SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0 9 L5 u, M; I1 D
SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000.
6 F8 o6 s, @: F' r% J1 | BLANK CARD TERMINATING BRANCH CARDS. 1
6 @0 K% J* W* y. P3 A SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
, Y* W7 r7 P& e SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100.
2 h( y1 Y8 D! s BLANK CARD TERMINATING SWITCH CARDS. 1 8 q7 H7 r0 L7 D. b6 M; u/ U) H! p
COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5% Q9 y5 x* V4 \3 _; q
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 54 s! {, Z9 O; h' O! H& |& J/ B6 ]
COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5
0 l3 T3 H* ~0 v' l1 T$ C. p/ T& _; L COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5
4 |8 w* M% W$ e& o3 J& F COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5& U ?1 L6 D' e3 R: |/ R `& |2 _5 l
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5
# B/ ?2 Q7 R N+ A- u SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1
4 ~, ~/ r2 }& J0 ^ COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1
1 [* f2 m- A- D. I& S1 G0 h2 Z! v COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1 1 e0 z& k5 P6 K- L" m
BLANK CARD TERMINATING SOURCE CARDS. 1 % b5 ?( M- B9 l& x* n
PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3- \8 |& y, T( i l; E4 j
' S& F. K! }9 w$ o7 N) g, `6 {& y' y
# B% |# [) F. K/ X: }, j8 l9 H. Z4 C SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P
- ^6 @) c+ c. W6 ` D- k IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.
( K' c# T; {) u: _: A0 Q+ X' r BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS ^! i4 T) p; _7 j% S: B
BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q
' e% ~9 x) l' y& }$ f6 Q/ d& [# K/ o" T; A2 i+ C
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00
, I- A8 T2 \- v. \, m5 J) A 0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+095 t0 i F" Z+ m& n' |! i! [; Y+ s) q
+ f- R, [5 s6 \' ?: G; c0 X7 j
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+00& |1 s& T+ q+ g* R0 x! c( U
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00
# E8 ^% a# t5 f, U9 S! N$ q+ F0 X$ U, T5 L( h4 P# X2 b& P, @$ ?
+ A$ z$ [! O0 N( u) e5 x( S4 b R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
) f- H' `" N- J8 b% Y5 e; a 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
8 l. L7 z& o" p) \
+ F& m1 M2 `2 o! E7 i RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
$ m8 y; n) d7 x& n6 i1 S 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00; Q& k: E, l# h- ^) H8 g
' m$ f) w( A6 _/ l% a( |0 y
9 \& m% r7 p6 b w RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
5 L5 d/ l" r, ` 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00; {, Q( i( }2 d- g
5 ~9 F: {! f, W8 E; c. n# C; l$ b% V TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00& z# P' M( r0 G# Q& L
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00) P. s5 d/ F$ E7 G/ n" v$ n) v
9 }: Q5 B7 W R4 F! V/ U
/ }2 y+ u$ b$ c- ^
TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00, Q/ |( T$ ]7 T
OUTPUT FOR STEADY STATE SWITCH CURRENT( ]7 K* o, h9 ?. x; O) y; C
NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
1 G: f( O+ \! z& N: L DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+090 E. g8 ]: q2 D# }% _$ Y6 b* _# j
MX R1 OPEN OPEN OPEN OPEN OPEN
" w" r3 G5 C; K' {9 O( U0 v( c/ e. y, ]+ W: a
SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH- X# Z" q; z/ l2 ^5 g, C5 q j
THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,9 x7 `) K t4 B1 Z
WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR.; Z; m- W/ ^1 O4 E/ I; ?/ Z& V
NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER
( D+ x9 m/ `& }% [. P) J* { NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.
9 r( {" B$ n# e; P! S( E0 U. E6 K: A- Y$ [% M1 p4 x* r
DY
! T) ~6 |3 u3 c3 X9 p MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+098 N2 H8 i5 q9 a2 j! \+ \+ E
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+00
# q1 M3 z; e4 ^, A# S CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX
& B m. a# [$ p1 G CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1 # t1 F& E2 q/ p* r# f7 S, U
BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1 - ?5 H N3 ~3 l2 r
1 z- I% j7 i r8 f COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE 6 Y/ O; V3 Q% ~
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS ....
5 n0 N* p& ]5 _: R! h FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)| & S# `# t! D9 Z# U
NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)| 6 r) N' a" ~7 E) f! q- h, ?% b
NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)| 4 \7 n. c5 t: I6 W$ l
NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY|
& i% S( ^# n9 u. Z2 C1 a+ s FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR). * } S) i; K" q1 ], u
BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING| {: h: |, \3 L g4 a
BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING.
7 w& l d) O8 G; y 3 {. ~; X! c$ D% x2 L& r
STEP TIME DY MX MX
2 _- @' K$ L' f x$ U1 q% k2 n R1
3 q) e5 p: q; z8 Z1 e! X- Y$ ]% r" @ *** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.
5 L9 y& ?6 ?# p% i0 F9 ]7 F 0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00
- K. u$ ?7 D5 t3 i3 S/ v 1 0.000050 0.913887E+05 0.913887E+05 0.000000E+004 v* w1 R7 p! A1 k# S( l
2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00. U( f" W0 K- x
3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00
4 W: A/ m' w1 X3 O) `4 X2 v 4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00/ v0 H- h+ i/ E2 d8 a. ]% {
5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00; p3 w! Q) ]; Q9 f/ U9 l& D0 R U
6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00
$ L# v( v) c- ?+ \7 ` 7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00; B. ?9 {, K5 D w* W
8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
. n, `$ f$ P+ ~4 W" K" ` 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+00" k3 y2 t O. I& U2 \1 m1 R
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+00$ D. B* Q! k3 B9 [1 e+ z
20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00* t: o; _& g, f$ ]; c
30 0.001500 0.814380E+05 0.814380E+05 0.000000E+007 q! C) U& c- ]3 r* J6 U
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+00# B8 ? X ?, R& j. l/ L
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00
6 q3 z+ _! U9 q6 _ q 60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00% O8 D- |: q: V; _2 r7 q8 f! i
70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00
& u% N! J, V. o' M# r& S 80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00
) N) Z* j& V5 b( n% U' G 90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00
; `5 Y& D0 T3 q 100 0.005000-0.552882E-10-0.552882E-10 0.000000E+002 ~- k0 G9 ?, L; W6 |- a
200 0.010000-0.914000E+05-0.914000E+05 0.000000E+00+ ^& j1 Y/ Z+ o* v
300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00
; B3 O) [5 I. q4 l 400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
! t6 o0 k; V$ ]* ]( q s( K 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+00) R& X. D+ {4 P( P) W- H
600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00 _& L* q* Y6 l- w" u7 J
700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00
8 W, F5 u- D1 I: i ***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.+ g$ A" F7 [" R% Q6 s
800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00
9 ~& S) H* {% L( b0 B& [7 v2 M; d 900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00- ~# A$ v0 _8 P0 s7 I4 f
1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00
4 D6 M" g9 P& A ***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.
f8 D/ T4 [2 t: k 2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+03
+ }* C% J, t p' N. M 3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03
4 X8 e/ j% s% Y( d, j 4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03* {* k3 e0 U6 L
5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03* }4 k3 e& y4 @* j; m% d
6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
4 d0 ]* r2 e1 I 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+030 s9 t) h' d$ c0 P6 C: |7 T k D
8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+03
Q. E& J% v: }" f; v1 ~ 9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03$ g- \# @8 _% [
10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03: Z! @. T# K4 K" P' l0 a9 @: G! M$ x
11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+03
5 d" W0 ~- ~8 B |# [ 12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+037 [, r+ o) M/ G! _% A- l3 S
13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03& a1 T7 Z! E* I, E8 F) `
14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+030 A6 F' v# s, ` ]$ R# Q
15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+03* H4 _& n1 n9 D& _2 [
16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+030 ~# X; p9 k$ t8 q. h
( S# f$ T7 }! z6 N4 ]/ l3 u
MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE% F) m! {: q1 ]' Q
SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.
* r. D; q$ w. C( [1 | VARIABLE MAXIMA :, D9 p; h, B8 T; u( F3 ]+ a
0.914000E+05 0.914000E+05 0.847194E+03
& N( X. n3 e) M5 I0 j$ |& U7 m TIMES OF MAXIMA :' d# m& ^ C- b/ h6 _7 T
0.000000E+00 0.400500E-01 0.108500E+006 v8 a9 {& Z1 T* i/ e5 V) P
VARIABLE MINIMA :
$ e% P& {' s4 x6 Q -0.914000E+05-0.914000E+05-0.723871E+03
! j; |: g! v6 T* j TIMES OF MINIMA :- Q1 h: y4 C8 C: D( a
0.100000E-01 0.100000E-01 0.208650E+005 F; x. F( I, [2 }: G$ n/ F- [
0 a5 ?' q- n1 L, h, J
4 ^6 i! G) m# n
; w5 X! g8 Z% I5 t
& j! ^: w" \3 w b ** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX
& ]* h8 I2 N2 c/ \8 B# R, E3 k( f( x6 w
) w0 `$ D$ l% F* T$ b
- y6 z$ r3 [6 l% a ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX 2 F) C8 a+ O0 i7 q) G D
0 m: C0 ~5 ?& A+ h- g
) [$ @1 i6 M( I) m5 g' [0 r6 m/ d) y/ w( j N1 v
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX
' f9 M& @, Z, A( d( G; R& D1 c- I( |! E( j2 [4 e+ I! F
! i6 n" U% ^1 U, @6 w
8 a! {7 C5 X4 I6 J2 y8 i& P ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX 5 ?$ _$ y0 o3 [( `+ L" {2 ~0 B
/ H! Y7 ^1 I+ @& l
) |4 q) S5 |" j) L$ G( B; u( J
3 ? A: e( w7 _5 U& t3 \5 l1 c1 D ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1 & {$ z; I$ m3 ^. ]4 d* e( E, Z
% W6 a& [+ s( [1 q% x( J* P
/ E* ]4 A2 e9 o& x- _* O1 [& E7 X: Q7 Y, U* p
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1 - z+ _: I1 A" i2 |% Y0 ?8 X
* H3 }) x" i/ g+ e* B+ n' I, z
. O* ~, q: c) `
. C/ C) Z$ H u& r ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1
8 S2 c2 C' |7 w/ g+ `* z+ F3 C, s! ]) g7 ]' t) c, @9 m
; u/ j9 k3 n4 p- |/ r( s
( i* E' A) V) D3 I" e( [0 f" D
BLANK CARD TERMINATING PLOT SPEC. CARDS. 1 # }5 `. j2 [* v# p
8 o, k) f0 _: I' U
CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM. H! i% c6 F3 ~" Q! t1 U; k
A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)9 h" x* e0 L }( p
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)
* k; H* \$ Z. Q( e# J SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
" \, e8 P' Y& X1 x8 e SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)
1 ?- A, D: B/ n; E$ }/ d SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)1 u+ l; U8 \9 H& f* a
SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)
- ^3 Y! h: h0 \ v2 v SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)7 N+ Y* ?% l: J/ X
SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)
7 C9 l; i3 r- ^" g* h2 A$ [% K SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST); o* ~! g7 g! Y( `
SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)
0 C: T6 G4 ^! \( i0 e0 b SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR) u0 L: B& d) V) ^2 `
SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)* W4 q) g7 I/ B) W
SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)! E& e, i. X0 v
SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS) M+ J$ M. X0 _4 {5 v0 Z# S4 f
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)
9 d/ |3 L% X! E6 m, _4 F. ?7 I3 h) D SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)
: F" {( g, x. z# u SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)! e& h4 M$ {$ c4 N
SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)$ X# g N$ o( Q3 m( s8 X
SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)
- i, X+ B7 Z* L& s4 R SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)
! R9 l, E) I& J/ N SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)
h( F1 g* M) M) T& }! G% w) B( _ SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)9 a/ e7 ~/ m! C' p" R/ ]8 R
SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)( u! y4 R! R- O+ @
SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26)
6 m" p2 L# b+ a' i ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4 . {7 b( D" ~* `; P
ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610) J+ `6 a* o) c+ b, b6 ?& q% x" R
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000' H f8 ]9 R+ X( {5 j; v# ?2 M
800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
. @3 o9 x/ A& Q) A- d- g! n --------------------------------------------------+--------------------------------------------------------------------------------" W& }! F$ f1 E- K9 l( @! V: p
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.8 L: Y3 F( H G1 _, N. c2 m4 `
0 1 2 3 4 5 6 7 8+ ]% _6 s6 @+ {! L
0 0 0 0 0 0 0 0 0
# J I# e0 d" e6 \! j2 D2 l/ x! N --------------------------------------------------+--------------------------------------------------------------------------------
, b7 m4 E7 Y# G MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
: m# V- g+ E9 A ] BLANK TERMINATION-OF-RUN CARD. 1 |
|