|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!* B6 U9 t! N: o
我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?
* m B7 |/ x5 x5 A肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE, @( R- R5 q2 n- w6 c
C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
8 N2 l9 l: k: e$ K' qC FIX SOURCE
. R5 w4 a" R5 T .00005 .8 50.0* T$ u1 ^' }" B5 \9 C+ J
1 1 0 1 1 -1 0 2 0 0
7 U) W/ U0 A8 ^5 A2 l 10 10 100 100 1000 1000% S: h6 v4 f( a; I1 e4 x" v
MX 318.47, d, Y9 w! z9 h. t2 _( H# p
R1 RL 10.0$ m! K- l/ m s! s8 e
RL 1000.
$ i. z5 [) N; y+ T2 @BLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
5 z" [' t) r+ r. ?5 @( Z DY MX -1.0 0.04 100.
) Y/ H& t4 m5 I x1 G MX R1 0.06 1.04 100.. ^% W9 W# c+ D
BLANK CARD ENDING SWITCHES CARDS OF -TC- CASE
0 U* l# `! c- q! z6 q% |( g& GC 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1
8 {# v. _( u4 }/ GC 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1
% e' l5 o. [. P- D- A( RC 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1& Y+ ]% N" U0 e7 f3 D4 M/ O7 O. s6 m: w
C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1: o+ j/ r @7 \# l* Y
C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.1
4 ]& u* d# [% aC 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.15 _& A5 b* Y4 \# [* m% C ]9 s
14DY 91400.0 50.0 0.0 -1
( m S# E9 Z! g% G1 c+ zC 14DYB 93897.0 50.0 -120. -1. t# v9 P5 Q+ ^. O3 o
C 14DYC 93897.0 50.0 120.0 -1
; z0 p0 W; a! ?9 ~8 O" b0 \" r( MBLANK CARD ENDING SOURCE CARDS
9 |4 `* x* g+ j$ G4 H DY MX9 A* @ O; `6 A m" f% ^ P8 T" [
-1MX R13 J/ d1 Z5 b8 \ m% ?$ W
BLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS
9 k8 O+ x: |- \8 o% k* |3 z 14410. 200. DY MX
* A F2 l0 t6 ?0 n: L) G 14401.000.800. DY MX
' w+ m! q8 u3 g4 q 14401.000.400. DY MX9 m6 ~( U) d9 [# B% O, Y/ x
14401.000.200. DY MX) g- r. [( b" l' S5 p" j
19401.000.800. MX R1- _* m; Q" f1 y" p6 T# h1 Q( d
19401.000.400. MX R1
7 v7 w* m$ u' s( H3 C: ]$ g: p 19401.000.200. MX R1% B6 c; N6 o$ m& s0 K/ m
BLANK CARD ENDING PLOT CARDS
}% x0 ]& _' w" N/ V% R" YBEGIN NEW DATA CASE
5 h3 [2 d, s U- hBLANK. }; o# z F. {% l7 y
! R$ ^, P9 L k/ K* G# v ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4 ; |; P) V4 ~1 n, c9 H4 W+ q
ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 9606102 e6 m% D( j9 I% j$ j( H4 e
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
; j1 H% u! Q4 H3 L1 o 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
4 V0 z U6 O6 a8 b' X, B) E) n9 R --------------------------------------------------+--------------------------------------------------------------------------------
. ?: w& T+ S6 v( x9 {; W% F DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.# N0 T" I t2 t
0 1 2 3 4 5 6 7 8
& H% ? i, q4 p, r: Z' c 0 0 0 0 0 0 0 0 0
* v; C0 V' p" \/ G --------------------------------------------------+--------------------------------------------------------------------------------$ L# k8 L3 f3 A) F' }% E
MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
, q" J2 s* }' z COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK
0 w" f9 ^0 n9 z COMMENT CARD. 1C FIX SOURCE
+ Z: \$ ~/ T! f* R3 W9 m: ~ MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
3 H! ^3 j+ p y" ] ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.
5 d. i1 @" g/ I1 P, ]! j, U" C A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING" {8 q1 [; }9 R; R1 S2 c
THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP
+ y1 d( H- K9 t" c& ?, Y5 M MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 08 Z9 |( s' ~/ f$ |6 G
PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000
) G( D5 K0 }5 f2 q SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47
* U( i+ u2 C, K- |0 Z3 q SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0 , @! O7 U% \8 r6 {& F M/ m! {1 }2 D
SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000. ^$ @" C ^3 D. q+ ^- T
BLANK CARD TERMINATING BRANCH CARDS. 1
% Q8 F0 e- z- R* n# F4 U: ? SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
8 ^ v9 ? A0 B* ^6 m SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100. q* [5 ~5 s A$ h$ v" V& |8 V2 v# j
BLANK CARD TERMINATING SWITCH CARDS. 1
! G. y% m$ o. e$ S8 u- w COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5
' W1 f' |$ p. J8 {( x- u+ q COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5) O4 h/ ~0 w: v: M+ e
COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 56 q7 n) C. b- \; i6 e: T
COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5
+ F3 b; _; e0 |9 ~. y) @ COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5
3 h8 [; P; U( K3 r* f COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5
- ?% c$ s, H6 u( h% T SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1 # L0 n2 s; f$ f+ P% I% l
COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1 2 D: c2 e3 N& X# L6 m [$ ~
COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1
# \0 G9 M7 J4 Y, e. V4 n2 u: E BLANK CARD TERMINATING SOURCE CARDS. 1 5 V# d1 ]9 t5 w3 z0 R9 n5 @' o
PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3
! n% N5 ?4 ^( S O& l Y$ @0 |
8 N( w* k7 L: o% ]! C
+ ^: V" C! B- s4 x8 Q Y' E SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P9 l4 u, s9 \3 _ B. P: ]/ \
IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.% I/ r+ V6 g% E9 o8 z; G- G
BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS0 i. e& V2 C/ g/ v* H) w
BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q
8 s8 r' ~$ [- m
: _0 ~3 `, E- I! x% O9 x5 }2 \3 i- ? MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00: ^. }- D o/ C, q, v, V
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+09
8 X9 Q% p& _& A# I6 K+ F0 s3 t2 R
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+00. Y4 y' X; r. [
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00
8 @4 m7 s# j$ }+ E! E$ i7 h
4 U$ k+ _1 j' n; M) L" Z/ m; [1 S1 G) {# ]
R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00# X4 o2 W# V' T; B' {
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
; v/ A( e3 p: n; `, u; t
! }5 }) D, P. l$ H RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
$ P7 t |+ `5 l$ g" O 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00
) q' Y9 [9 _( R7 e5 I" p+ N! _7 [- J
- M- W" |" ~9 |+ v6 u9 ~, b
3 ?6 Q, H) d# u7 q3 c RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00+ s% |# N& ?) }' R
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
( n* ^6 [1 ~' {" s; _' _! k8 {
5 j- h& g! x4 h$ p TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
- S+ l8 c( E: p3 S# P( F 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+002 f+ P7 u5 z/ C, _1 o
+ \# @7 a% b3 |6 o$ P4 S
7 B: n+ s: f' _ _ TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00
( k- ]& b6 i' y* P/ M- F% e1 t: Z OUTPUT FOR STEADY STATE SWITCH CURRENT
2 L- r' s9 j* u) P9 N NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
+ @/ Q9 }. ?3 j1 c8 y3 l DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09
2 j" \ j; e* i5 Q) G MX R1 OPEN OPEN OPEN OPEN OPEN' |1 h$ c' K( R( P
/ R! d* D2 ^. I+ ~
SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH; m" Z: |* V1 T6 b1 j: K. n
THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER, C% o9 e8 @% P+ B
WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR./ d1 z8 U+ |+ C( o- |
NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER
* l, j5 ~% Y1 k; B NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F.8 x% N7 u4 C3 k: F8 W* ~- |) w
2 _3 v! F5 L! p5 d
DY
8 f. J% K4 e8 J* E6 s MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09 N9 E2 V/ U' M9 l& V7 x
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+00
& Q4 l4 C& @1 f+ p: ~* g CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX
' m) ]) `4 y1 p+ e7 Z9 J6 y- v1 D CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1 : h+ ~9 X; B; B* F& l a
BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1 ( N: z0 e. f( O) W' a
3 G6 j' u$ r- r* c: C7 F COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE 5 b9 C( [+ a3 P( X6 A
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS .... 7 c* [0 O# G' l( i w
FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)|
) L7 g# \: |1 S- C( ] NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)|
2 Z8 P0 p8 x" O1 N NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)| " N$ E" w4 z5 V3 U
NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY|
/ N, S) b6 }% r( d# s% v; Y8 n FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR).
, G3 S f4 @( V3 `( N BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING|
, ? U6 X1 s* s6 r8 B) C8 h BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. 9 Z$ D6 D. V/ i: x9 N: ]# o
! G/ y9 o, [1 g! |$ V
STEP TIME DY MX MX
" q1 B+ y" V ^2 t R1 # v+ I4 w# F1 d# s' ?, E+ g) p
*** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.9 k3 V4 X# {6 {6 I* _* N
0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00- _( n& K6 O& d2 D% D. V. f4 W( Y1 L
1 0.000050 0.913887E+05 0.913887E+05 0.000000E+008 X) q8 \! G* a7 r- w' p$ B5 ]7 i
2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00# v, I, r c9 `% N7 t
3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00
% I/ e) h3 {0 e 4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00
0 a6 } c, u. o4 l4 X4 F 5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00, ]7 n8 u0 B3 S% x3 P( Q* r7 _
6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00
/ [8 c4 \- ? U$ `) a6 C 7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00
1 M8 O3 s6 G% |& W. g 8 0.000400 0.906793E+05 0.906793E+05 0.000000E+006 p0 \* Q( A3 `; q( g! c
9 0.000450 0.904882E+05 0.904882E+05 0.000000E+00
3 L$ O% v9 z/ I* i4 w9 g 10 0.000500 0.902747E+05 0.902747E+05 0.000000E+00( H' o B: c' c/ P
20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00 J5 f9 M$ U& c6 j j! d4 L6 w
30 0.001500 0.814380E+05 0.814380E+05 0.000000E+00
' [* j/ X: r! ^( t1 ~9 k 40 0.002000 0.739442E+05 0.739442E+05 0.000000E+009 X( w A* {5 q6 H4 ^3 h5 p
50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00( ~2 j* O; D4 _) t# Y$ ?0 e
60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00! l; k9 w" p" O+ D% F' P6 C
70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00
2 W$ x' X" R3 L/ o+ k% c) z1 y/ O 80 0.004000 0.282442E+05 0.282442E+05 0.000000E+004 t7 J; u# l. T9 j' W
90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00( ]3 M' F& ]& x ^
100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00. E5 O5 @8 R, k) E
200 0.010000-0.914000E+05-0.914000E+05 0.000000E+00
, ^" e& t1 C0 N" m' ]9 ] 300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00
2 P+ \: E& W* }/ w, y- z 400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
6 D% @) [2 ]$ O1 I" i7 l 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+004 w) v' Z0 H: P V4 J( V, P3 b
600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00, B- L2 q1 u3 v
700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00, w a/ `2 Z' y( [& z
***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.
- t' N& v% M/ [: f# `6 p 800 0.040000 0.914000E+05 0.914000E+05 0.000000E+009 @! A, M" \, B# ]( G& g* m
900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00
6 w3 _, K- r) K 1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00
9 @7 l4 R) V E) w/ z ***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.1 Q: X! }6 V$ c3 W3 x
2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+03. w# j# f3 Y; E" I
3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03
* ^8 m; W1 N1 ~9 y+ T0 ?' R 4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03
' x+ I' v5 h% B6 D. C3 ~; { 5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03
) C+ s8 S/ p0 J* G* h 6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
% F3 q& L: b( |+ y$ {$ H2 o 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+03
; W8 i% W5 N% N* T% n 8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+03
* q. S9 l3 t3 H U% f 9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03- h8 ]0 o. H- W) W
10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03
9 ]$ b' d& G# _. O7 ~ 11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+03/ n8 _* F8 t. ]7 _ d" z
12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+03
/ y6 @. f0 K3 g4 K5 o* V8 V 13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03
+ E* J# R1 t; |! y$ | 14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+035 `& D/ [ _. H8 r6 s C
15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+038 [7 Q$ C1 n; e. F) @/ C
16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+038 e' {/ E' o/ }, ?" K! ~
& v9 [+ u- V" f MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE: c" l4 Z* c) |- O( J0 g
SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.2 \' e! C8 G8 i& A( V6 ~8 e" m
VARIABLE MAXIMA :6 z' U3 k4 A! S* o% {$ C! O
0.914000E+05 0.914000E+05 0.847194E+03
! ]4 f% X8 t$ L, _ m7 j; k% O TIMES OF MAXIMA :2 V$ l S$ ~( n# S
0.000000E+00 0.400500E-01 0.108500E+00
+ r% f# Z5 R1 a% ~ VARIABLE MINIMA :
m6 E5 h: Y B+ D% Q1 R -0.914000E+05-0.914000E+05-0.723871E+03
! J: I1 d! {/ M7 f. a2 Q TIMES OF MINIMA :. Y1 g- R3 }, ]) n7 o
0.100000E-01 0.100000E-01 0.208650E+00
# q+ k# y; d6 [* H! M& ~# X [+ ~0 w( M3 A: D" A7 A
, q/ {8 p) P0 \: M
5 @$ l9 G9 u/ i' q8 f0 F
" y4 P" }- E+ ]+ u2 s+ M1 d' g2 o
** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX
. B/ \ L' H4 n
9 _! E, t( J( b8 P" {& X
( P9 n! m( x5 s4 i9 e* ~2 F; P0 K2 ?9 c0 l; t- b! r
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX . E$ m( f+ b; ^6 I% W
8 C8 F: R: m0 E" R# B9 B% n
+ l4 M3 s8 u" S$ J% _
# ]9 p4 g1 V( |0 l' c5 B! M6 l ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX ) a1 g) _1 M+ }" |
& M4 o. H l k4 S2 O
/ _& Y/ j0 S6 h) M7 n6 O0 ]9 v& _3 L: z2 y0 v3 \' T0 J/ N
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX
" @0 [: j' R& R2 i9 x* ~" V
. }( U0 C6 `% [( h+ f& G* j/ }; D- ]6 ]" Y' ]5 y
9 m2 z; L" n- @- D8 ]* P; g
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1 0 W% f/ }9 H+ r, M; ~+ X6 J1 j- y
; Y, P1 {- [' \/ |7 t" b
; z( O F7 h. J1 s8 d& q+ l
* \' \1 P: i1 I ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1
) v3 y5 I: R$ M+ e1 P+ a" Y
% w6 P) e$ t# y5 Z9 P! n3 W9 A5 ?" o" V- A2 m5 Y
+ X, I( }) G3 F
** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1
+ K' A0 l5 b9 h% b8 H, j, o7 J7 C1 o; ~. o- t3 u8 O
% V4 j; A$ \0 K/ v! i% Y6 r
# F7 t, A" w! d5 H ?) F BLANK CARD TERMINATING PLOT SPEC. CARDS. 1 / ^9 i) T! l% i8 q1 t. w
2 c- v8 W4 W. K f: n* |9 r6 O CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM, ~" ~/ l3 o& N* I5 O
A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)+ N- j( t# _# X9 d& S* ]* ?
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)! X6 |- R& @0 C1 Y. D# q) e" I& @) W
SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH) `+ u3 e) J5 Z$ L( S) F
SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)
: I$ F9 Y' {' }6 o SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)+ K, }, X# \( w7 ^
SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)+ \/ H+ D3 V. J N+ e% i
SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH)- ^" h4 @8 Z0 T' W" z
SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)" c7 H/ ^+ T, Q& H
SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)
4 ^: ?, o7 E0 o9 P8 a; T SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)
* e9 k8 x: m2 y( D6 V% x& c+ M SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR) q2 W, h" Y. t F; V4 S
SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)
( n' j6 |5 `: x" E2 N0 Z$ a SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)5 V/ h! H' p$ l5 A/ H+ I* m4 _ ] c
SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)% L; M+ ^* d$ ?$ F3 K4 e1 A( I6 H
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN)
- T' k3 `& j# m" y- b& i/ x* Q SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)) L, p, Z4 F$ z8 {! C# c" k" N
SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST)
/ a. Y2 q* o7 U# |6 e% h SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)8 I# Y0 k( t; `
SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD), j+ Y% u9 g1 B @& R& B, h: B
SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)
& p7 G0 x& b" \ SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)
4 x$ l9 Y5 C% x- k$ Z+ E, Q SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)9 u2 }3 ~+ Z- h# p$ T j
SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)
+ ]- p6 S# v: A; L6 @1 A+ w SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26)7 @* f$ w# U* W
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4
! x. [" E; o! E& d; W& u ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610
+ Q; \" }1 g+ o6 N& r INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 900005 A$ _$ I5 h' g' K9 O3 Q' C
800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
3 r9 i5 B- n$ o' F --------------------------------------------------+--------------------------------------------------------------------------------
. o( g5 i, q- r3 C% V DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
: h& W( h) x) F 0 1 2 3 4 5 6 7 8# P8 ]! I7 A3 d% D
0 0 0 0 0 0 0 0 04 a. h& d: Y" v2 D* E0 y; }
--------------------------------------------------+--------------------------------------------------------------------------------
5 `# v* l& A0 I: t7 c MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE - M* T! M' Z" ^ p5 \, ], ~
BLANK TERMINATION-OF-RUN CARD. 1 |
|