|
楼主 |
发表于 2009-8-20 16:13:36
|
显示全部楼层
我把10年前的老套统又翻出来。一个是DAT文件;一个是今天重新做的OUT文件。因为,我电脑使用也特别差,纯MS-DOS下波形曲线我没有办法传上来。我回忆,它在运行结速时会有一个???.pl4文件。我又去看破电脑,确实我看见了有Plot.pl4文件,是090820 13:45今天生成。我在想,用一位版主帮助我的TOP软件,不知是否能读出?!0 v( H% G9 F8 a6 e
我就感到奇怪,马教授的96年软件,能够用集中参数R L C仿真模拟电容器向电阻、电感充放电的暂态过程,怎么ATPDraw5.5不行呢?
, T( T2 E$ G3 {3 C& ^- v肯定,是老头没有认真学习说明书!!!BEGIN NEW DATA CASE
& s) o, f5 a4 I. [5 e0 AC BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK) g4 |! Y" a! O5 \2 @" K
C FIX SOURCE
/ g1 ~' _" m! f/ H! g) | .00005 .8 50.02 N2 r! V( Q1 X5 N, _
1 1 0 1 1 -1 0 2 0 0
4 s5 o) O: \6 ^6 i j! R 10 10 100 100 1000 1000
& [% S- _, S2 p I! m: y5 k; n1 H MX 318.47- C2 _0 d* V+ }' G
R1 RL 10.0
( M6 }6 h8 k! B6 s8 H RL 1000.
0 F) z. l6 `$ ^# _- \4 t6 l0 yBLANK CARD ENDING BRANCHES CARDS OF -TC- CASE
) p; I% f2 {- e' B; d DY MX -1.0 0.04 100.* T0 C( M# p/ P- v" o+ X
MX R1 0.06 1.04 100.
4 X$ m/ f: P; y3 mBLANK CARD ENDING SWITCHES CARDS OF -TC- CASE
5 a8 ]# i# c+ y. S/ `C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5.1! t) \ U5 g" j
C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5.1
2 d+ s/ e+ A4 j: }/ U" e5 rC 14DYB -1 9.14e5 50.0 -135.0 -1.0 5.1
+ V8 K7 ^' Y$ m8 K' {5 ~% UC 14DY -1 -9.14e5 50.0 -135.0 -1.0 5.1
' Z+ A) i6 L! m- cC 14DYC -1 9.14e5 50.0 -255.0 -1.0 5.12 Y5 X0 l$ F: ]2 ^
C 14DY -1 -9.14e5 50.0 -255.0 -1.0 5.18 Y+ O+ e! N0 a6 D
14DY 91400.0 50.0 0.0 -1 y K3 b$ O1 J
C 14DYB 93897.0 50.0 -120. -1
- K8 {) {8 n6 f4 _C 14DYC 93897.0 50.0 120.0 -11 c% o; C6 l) f+ T2 ]% E/ t* ]# \
BLANK CARD ENDING SOURCE CARDS/ J" k/ _9 X: S
DY MX
5 e1 ^& _3 y+ i8 M" v3 R8 Q8 `) }-1MX R1
. |6 l! S: {7 L! d% I& {1 ]BLANK CARD ENDING SELECTED NODE VOLTAGE OUTPUT CARDS3 P# j9 C% y5 W2 ~6 R
14410. 200. DY MX0 S; m# C' I' P- y8 Q3 ?7 n7 W
14401.000.800. DY MX
}8 t% x/ C& J8 O; Y K9 y0 [ 14401.000.400. DY MX/ i$ _. O7 p# i/ p4 @4 X" y$ X; {
14401.000.200. DY MX
' F/ B2 m+ y" Y- _( C: [: S 19401.000.800. MX R1
* s& t* h( k$ Z2 r* s 19401.000.400. MX R1) ~/ [0 G$ I! |: h4 o0 ^! O
19401.000.200. MX R10 Q$ C2 h. z& W1 L" c
BLANK CARD ENDING PLOT CARDS
9 b9 A0 F0 P2 L+ s* O, ?1 l) W1 ]0 ^2 HBEGIN NEW DATA CASE
% K& d+ ]+ c1 p' e& G* ?7 uBLANK
# X! ]8 M# _! G( m' R+ S
* y, _8 P, [3 b, H" T ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.57.13 PLOT FILE = PLOT.PL4
- T8 ? ?$ K& n ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610" [ Y& u6 b( o, M- S4 z5 r; v
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000
/ g8 f* x% }3 |6 o" H& t 800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
" E& c) m" Y' }4 b- }& o! p --------------------------------------------------+--------------------------------------------------------------------------------) }8 t( N/ j- Q5 A _
DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
; M( t' u6 @ W+ G$ T 0 1 2 3 4 5 6 7 8$ C5 @$ T8 s' }) J( v
0 0 0 0 0 0 0 0 0$ L$ C/ a& A* B# N
--------------------------------------------------+--------------------------------------------------------------------------------
2 {' g$ M% A' U MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE . K) |# ^% p* {' y% h: I( I! _
COMMENT CARD. 1C BECNHMARK CRLZT.DAT DT=50VS JSSJ=0.4S 4TDYQX ZT 10KVXTQXYY AXDK # K3 \& J( _( [, U) p" C5 _. `
COMMENT CARD. 1C FIX SOURCE $ M6 Y5 ]8 A) h, k* O* q7 E
MISC. DATA. 0.500E-04 0.800E+00 0.500E+02 1 .00005 .8 50.0
7 c9 R* ~; N5 `+ N ----- WARNING. NONZERO MISC. DATA PARAMETER "XOPT" DIFFERS FROM THE POWER FREQUENCY OF 60.00 . THIS IS UNUSUAL.
" y' o; g0 G8 z# ?3 Z, u A VALUE OF 0.5000E+02 WAS READ FROM COLUMNS 17-24 OF THE DATA CARD JUST READ. EXECUTION WILL CONTINUE USING" G: i: o5 W3 R8 _
THIS VALUE, AS SUSPICIOUS AS IT SEEMS TO THE EMTP. u( Y4 a: q0 f- H
MISC. DATA. 1 1 0 1 1 -1 0 2 0 0 1 1 1 0 1 1 -1 0 2 0 0! C; x2 x7 |8 `4 M
PRINTOUT : 10 10 100 100 1000 1000 1 10 10 100 100 1000 1000
7 C/ w! G' j* S6 {) t* p$ L SERIES R-L-C. 0.000E+00 0.000E+00 0.318E+03 1 MX 318.47 * r! s! e3 X0 a
SERIES R-L-C. 0.100E+02 0.000E+00 0.000E+00 1 R1 RL 10.0
\4 s/ o% [' e; f SERIES R-L-C. 0.000E+00 0.100E+04 0.000E+00 1 RL 1000. & n2 m( ? x/ A, r# C
BLANK CARD TERMINATING BRANCH CARDS. 1
* g5 A& Y/ ], H SWITCH. -0.10E+01 0.40E-01 0.10E+03 0.00E+00 1 DY MX -1.0 0.04 100.
& Y: O2 |; r# @" [ SWITCH. 0.60E-01 0.10E+01 0.10E+03 0.00E+00 1 MX R1 0.06 1.04 100.
& e( f5 i* v' |/ y8 l& |% }8 O$ J BLANK CARD TERMINATING SWITCH CARDS. 1
# o7 u. S Q( s COMMENT CARD. 1C 14DYA -1 9.14e5 50.0 -15.0 -1.0 5
4 v5 Z( @: x2 l COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -15.0 -1.0 5, \8 x+ b9 L* c
COMMENT CARD. 1C 14DYB -1 9.14e5 50.0 -135.0 -1.0 5
. A- R+ c# e! H- j8 E/ _% ~ COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -135.0 -1.0 5! M3 d" p3 j+ h/ L) j+ `" ~! M
COMMENT CARD. 1C 14DYC -1 9.14e5 50.0 -255.0 -1.0 5
0 c' u( K: U* P COMMENT CARD. 1C 14DY -1 -9.14e5 50.0 -255.0 -1.0 53 X H7 g+ O/ G* p! q9 ?
SOURCE. 0.91E+05 0.50E+02 0.00E+00 -0.10E+01 114DY 91400.0 50.0 0.0 -1 7 [7 d w# n8 U4 Y& C
COMMENT CARD. 1C 14DYB 93897.0 50.0 -120. -1
) j. j4 |5 Z2 G8 H; A; N2 D& n; R COMMENT CARD. 1C 14DYC 93897.0 50.0 120.0 -1
# [; s" d( ]5 X. _& ~( w# u$ j {. a" Z BLANK CARD TERMINATING SOURCE CARDS. 1 3 `. i8 M- Z1 O/ h0 f1 ~
PI-EQUIV BRANCHES OF DISTRIB LINES IN TR, TX, ETC. BETWEEN LIMITS 4 3
, b" R; n( ~/ f* c
3 j8 U# k2 i0 \* K" B, u5 |) M D5 O* U2 ^4 B' ~5 x1 J" X
SINUSOIDAL STEADY STATE SOLUTION, BRANCH BY BRANCH. ALL FLOWS ARE AWAY FROM BUS, AND REAL PART, MAGNITUDE, OR P* y1 E: n( z k1 u
IS PRINTED ABOVE THE IMAGINARY PART, THE ANGLE, OR Q. FIRST SOLUTION FREQUENCY = 0.500000000E+02 HERTZ.
3 b0 V3 `) X% H BUS K NODE VOLTAGE BRANCH CURRENT POWER FLOW POWER LOSS0 f) [7 m8 G1 d9 ]2 i" M
BUS M RECTANGULAR POLAR RECTANGULAR POLAR P AND Q P AND Q
0 j' E3 ~ f: b b0 t2 T! z' C2 Q; Q
MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.0000000E+00" p( X& I5 b! E9 j- Q9 H* |( l4 s: _9 j
0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 -0.4179081E+09
1 d9 L5 t, {- y2 G* \3 g7 d: O
$ v) d$ a# t! B TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.9144598E+04 0.0000000E+002 u9 X* @# @2 r
0.0000000E+00 0.0000 -0.9144598E+04 -90.0000 0.0000000E+00
6 ^3 r/ A W. ^% q' m! r3 g
O8 L7 ^0 z. K% @" w$ L7 H+ V9 I& Q7 \, B, Q; J- g
R1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
& i% R5 d3 j, S% f2 z9 k3 @# ^% Y 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
, q: n2 _/ b; P, m
0 Z8 M% o1 a4 P. S1 y1 b RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
, k! G5 O# k4 e' M) H q. L 0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+005 C1 Y% p& D! i4 z8 A; c" P
]' e1 x/ T+ q& A3 M0 E; B& j# P4 ?3 G
RL 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+003 t/ }# [# c2 v) D/ H
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00 0.0000000E+00
, p: w0 U, {7 h6 u! ]2 m- W5 y, u5 w1 ]9 p% Y5 @% |) u+ l
TERRA 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00; X. `% O; g4 f" @9 S ~ a
0.0000000E+00 0.0000 0.0000000E+00 0.0000 0.0000000E+00; ^7 Z4 ?; p$ g6 Q$ `
+ i6 Z9 n. p" M+ o
2 g, b! ~* i2 M- \, s# F
TOTAL NETWORK LOSS "PLOSS" BY SUMMING NODAL INJECTIONS = 0.00000000E+00
9 F# ?; h5 R; Z- z) G OUTPUT FOR STEADY STATE SWITCH CURRENT
+ E1 ~3 ~0 }/ R4 I, [' d# O NODE-K NODE-M I-REAL I-IMAG I-MAGN DEGREES POWER REACTIVE
; n$ ]$ G) y: y9 W7 ` DY MX 0.00000000E+00 0.91445975E+04 0.91445975E+04 90.0000 0.00000000E+00 -0.41790811E+09; C( h9 _5 r0 G
MX R1 OPEN OPEN OPEN OPEN OPEN( @! ]/ h6 l* J6 @6 ~
6 J7 f2 S: x+ }5 F" D- C. F
SOLUTION AT NODES WITH KNOWN VOLTAGE. NODES SHORTED TOGETHER BY SWITCHES ARE SHOWN AS A GROUP OF NAMES, WITH$ x9 g/ c. v2 M
THE PRINTED RESULT APPLYING TO THE COMPOSITE GROUP. THE ENTRY 'MVA' IS SQRT(P**2 + Q**2) IN UNITS OF POWER,3 b7 U+ O- H$ H4 r$ `6 I; [
WHILE 'P.F.' IS THE ASSOCIATED POWER FACTOR.9 W" W' w3 T$ h1 U) |
NODE SOURCE NODE VOLTAGE INJECTED SOURCE CURRENT INJECTED SOURCE POWER- c# f4 U2 T+ ^6 t' ~& \
NAME RECTANGULAR POLAR RECTANGULAR POLAR P AND Q MVA AND P.F. ~9 z" h6 t& J0 G, ~4 |
8 `4 e$ W! A" z1 u: R/ ?; M DY
Z3 p9 r/ ]/ c7 `% J: k% V MX 0.9140000E+05 0.9140000E+05 0.0000000E+00 0.9144598E+04 0.0000000E+00 0.4179081E+09
( p, t3 ]8 H* b6 j4 \9 S 0.0000000E+00 0.0000 0.9144598E+04 90.0000 -0.4179081E+09 0.0000000E+006 R$ \4 W" P6 b* _9 r9 I! E) D( S
CARD OF BUS NAMES FOR NODE-VOLTAGE OUTPUT. 1 DY MX S3 W* \2 R, s ^% A6 M* e+ \
CARD OF BRANCH VOLTAGE, CURRENT ...OUTPUT. 1-1MX R1
+ u* U2 o# ?8 u; a* N BLANK CARD ENDING NODE NAMES FOR VOLTAGE OUTPUT. 1 7 X7 a8 o; `) \' r3 u( ?5 V
2 L! N: ~- f H- P3 p) T COLUMN HEADINGS FOR THE 3 EMTP OUTPUT VARIABLES FOLLOW. THESE ARE ORDERED ACCORDING TO THE FIVE , r; ~4 K" {. F# U i$ U
POSSIBLE EMTP OUTPUT-VARIABLE CLASSES, AS FOLLOWS .... ! [+ A) h- C3 F& u H+ ]
FIRST 2 OUTPUT VARIABLES ARE ELECTRIC-NETWORK NODE VOLTAGES (WITH RESPECT TO LOCAL GROUND)|
" I" L, }9 X! {( M NEXT 0 OUTPUT VARIABLES ARE BRANCH VOLTAGES (VOLTAGE OF UPPER NODE MINUS VOLTAGE OF LOWER NODE)|
+ W" l- Z; t8 L8 a5 E1 E, r2 d NEXT 1 OUTPUT VARIABLES ARE BRANCH CURRENTS (FLOWING FROM THE UPPER EMTP NODE TO THE LOWER)|
* n0 v0 ]7 E- }: @/ o7 w NEXT 0 OUTPUT VARIABLES PERTAIN TO DYNAMIC SYNCHRONOUS MACHINES, WITH NAMES GENERATED INTERNALLY| 0 q& A+ D/ r. P+ \
FINAL 0 OUTPUT VARIABLES BELONG TO 'TACS' (NOTE INTERNALLY-ADDED UPPER NAME OF PAIR). 2 Q2 B4 A2 H- J, [: A( m$ s$ A
BRANCH POWER CONSUMPTION (POWER FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH VOLTAGE FOR THIS GROUPING|
* e- E# J9 ?+ [. \ BRANCH ENERGY CONSUMPTION (ENERGY FLOW, IF A SWITCH) IS TREATED LIKE A BRANCH CURRENT FOR THIS GROUPING. ; T* O5 ^( H$ D3 R
, |7 k$ |5 W4 A$ g* y! c: o$ B( U) h STEP TIME DY MX MX
Y2 ?4 z( e; x7 U+ | R1
6 c8 n( c# J. p6 p *** PHASOR I(0) = 0.0000000E+00 SWITCH "DY " TO "MX " CLOSED AFTER 0.00000E+00 SEC.
+ s9 U1 A( T ?3 y% O- W 0 0.000000 0.914000E+05 0.914000E+05 0.000000E+00
! R/ D" I# e m, E$ B 1 0.000050 0.913887E+05 0.913887E+05 0.000000E+00
, z% |! Z7 ], X x( ~0 G8 s& k7 t 2 0.000100 0.913549E+05 0.913549E+05 0.000000E+00
! s% D; ]1 P) S ?, Y 3 0.000150 0.912985E+05 0.912985E+05 0.000000E+00
; r4 t) S: n4 f' U' D) T) M$ b: m) [ 4 0.000200 0.912196E+05 0.912196E+05 0.000000E+00# D; D, R6 f, y/ M
5 0.000250 0.911182E+05 0.911182E+05 0.000000E+00
- U6 S% M* ~0 B8 W 6 0.000300 0.909944E+05 0.909944E+05 0.000000E+00
9 K/ ?' u0 f6 C, `2 ~" Y! b6 u 7 0.000350 0.908480E+05 0.908480E+05 0.000000E+00
9 Q: ?) G. q& M 8 0.000400 0.906793E+05 0.906793E+05 0.000000E+00
! N* ]. n+ {9 G* |! g) ?) D2 ~ 9 0.000450 0.904882E+05 0.904882E+05 0.000000E+006 Y8 A. g( t5 M4 o* l+ @8 r5 z
10 0.000500 0.902747E+05 0.902747E+05 0.000000E+00
: m- m! j, [# B% s9 L 20 0.001000 0.869266E+05 0.869266E+05 0.000000E+00( K& _$ k7 z( g1 i# |
30 0.001500 0.814380E+05 0.814380E+05 0.000000E+00! J* L* F n+ v v: L
40 0.002000 0.739442E+05 0.739442E+05 0.000000E+00
7 }! }+ Z' q3 e' o 50 0.002500 0.646296E+05 0.646296E+05 0.000000E+00" E- Z' U8 k' b) l; }
60 0.003000 0.537236E+05 0.537236E+05 0.000000E+00
+ C) c# h0 s, Y6 k0 r- M 70 0.003500 0.414947E+05 0.414947E+05 0.000000E+00
( s8 f1 x2 ^9 r( R; T' D1 S) ~" q' n 80 0.004000 0.282442E+05 0.282442E+05 0.000000E+00: m7 D/ k8 a- Q/ e; q4 `
90 0.004500 0.142981E+05 0.142981E+05 0.000000E+00+ d7 |# D+ X+ s" R7 P+ e! H
100 0.005000-0.552882E-10-0.552882E-10 0.000000E+00
5 p T+ c7 w/ e8 f$ O" C4 ]6 T 200 0.010000-0.914000E+05-0.914000E+05 0.000000E+004 O4 n2 @9 Q4 O6 d5 t& J
300 0.015000-0.164038E-08-0.164038E-08 0.000000E+00
; k. H; M1 B# I# i 400 0.020000 0.914000E+05 0.914000E+05 0.000000E+00
: | S/ S! G! F ^; G9 e6 F 500 0.025000-0.589812E-08-0.589812E-08 0.000000E+00
5 b3 \7 R0 w+ t) O+ d: f1 u 600 0.030000-0.914000E+05-0.914000E+05 0.000000E+00
$ ~, t( y7 W; e1 J% Z! O7 ~ 700 0.035000 0.140861E-07 0.140861E-07 0.000000E+00
& W) r& D/ e8 n; m9 }! B ***** SWITCH "DY " TO "MX " OPEN AFTER 0.400000E-01 SEC.
5 P/ C( y7 i i) ] 800 0.040000 0.914000E+05 0.914000E+05 0.000000E+00
" l0 |# H9 _) p4 O7 Q8 c( X. n# x 900 0.045000-0.223552E-07 0.914000E+05 0.000000E+00' o. ?9 l& v5 }$ j( t( L
1000 0.050000-0.914000E+05 0.914000E+05 0.000000E+00; |! `( G0 L( l4 F" C; u* ]/ r" C. p
***** SWITCH "MX " TO "R1 " CLOSED AFTER 0.600000E-01 SEC.
; L! [5 U( ~1 E5 Y+ j1 e( K+ D' P% v 2000 0.100000 0.914000E+05 0.308276E+05 0.816876E+03
* S% _: e0 I: @4 C& a 3000 0.150000-0.914000E+05-0.740984E+05 0.249386E+03 }& t$ R$ i; z% ~; ]; {0 g" v/ M
4000 0.200000 0.914000E+05-0.266698E+05-0.697043E+03+ u( y' `- V( X: d9 O8 C& K0 J) b
5000 0.250000-0.914000E+05 0.632108E+05-0.216176E+03
+ m9 ]( ]( {4 c! |% e 6000 0.300000 0.914000E+05 0.230688E+05 0.594775E+03
; b4 M5 M5 l- X; N5 a1 K I" M2 i 7000 0.350000-0.914000E+05-0.539215E+05 0.187348E+033 |7 a: T" ?, Q/ d5 h( \# k
8000 0.400000 0.914000E+05-0.199508E+05-0.507498E+03
, h7 w" ?" v6 K3 ] P6 @! R$ |$ k8 K 9000 0.450000-0.914000E+05 0.459962E+05-0.162329E+03$ o. a- r% |: m5 D& H
10000 0.500000 0.914000E+05 0.172514E+05 0.433018E+03- p# U# Z: Z( h( y; t9 F
11000 0.550000-0.914000E+05-0.392347E+05 0.140622E+039 b7 M& W' {' @. ?1 P8 u+ M
12000 0.600000 0.914000E+05-0.149149E+05-0.369459E+03/ a# T) C6 H( Q# ?% Z m
13000 0.650000-0.914000E+05 0.334663E+05-0.121793E+03* u" ]' z2 i0 W: i( f
14000 0.700000 0.914000E+05 0.128929E+05 0.315222E+03
; m* X6 `. [5 J4 t3 W2 J w3 \% m& N 15000 0.750000-0.914000E+05-0.285453E+05 0.105465E+03
; b$ k6 ~& E* ]+ i 16000 0.800000 0.914000E+05-0.111433E+05-0.268939E+03
' T7 x- X/ _9 H4 e' N
) c; G+ I# c1 i& f MAXIMA AND MINIMA WHICH OCCURRED DURING THE SIMULATION FOLLOW. THE ORDER AND COLUMN POSITIONING ARE THE
- \1 A& F4 F3 `. i% k& f$ A SAME AS FOR THE REGULAR PRINTED OUTPUT VS. TIME.5 g! A* Z" T' z. C
VARIABLE MAXIMA :
7 _5 o. |' ]1 c _% h 0.914000E+05 0.914000E+05 0.847194E+03) `8 d9 Q9 G: D% N6 n( F/ x, @
TIMES OF MAXIMA :
6 f6 i& C, D3 ^8 ]' E' y 0.000000E+00 0.400500E-01 0.108500E+00
) g& @1 w5 C, `* Q6 j+ k VARIABLE MINIMA :( F2 b7 F6 ^; q# l1 x
-0.914000E+05-0.914000E+05-0.723871E+033 G0 _3 n- ]: d
TIMES OF MINIMA :
* T* W6 F1 Z, z! N6 u; U* T; [; @ 0.100000E-01 0.100000E-01 0.208650E+001 i$ v+ C7 B9 F1 `0 R
2 v1 n- p b* ]. I3 i
& g# f7 B$ W* n2 G% t, A" {' Y7 W; D7 \, d# }4 O
6 g! E, w% Z" ^# k* k7 X ** PLOT CARD. 0.100E+02 0.000E+00 0.200E+03 1 14410. 200. DY MX ; \7 U6 g; w! Q* H, Y2 k
, T8 y/ s9 B+ C: q6 _9 E i
. A0 [8 y$ I) z
- @9 O( m, O) ?7 n' w- v& N5 ` ** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 14401.000.800. DY MX
- O9 L- p5 i6 o: a1 B2 a7 \8 {8 ?* r0 x) e
- M$ [7 [2 h1 b$ ^; t
1 s3 F% K* T( [7 D7 ?3 A2 _" E
** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 14401.000.400. DY MX
8 s/ X. K( r0 X: g
`' X `* Q( r; M- Y$ c
+ d( [3 O' p* }* [% l* m
5 P7 J+ n( D/ E1 g& Z& W0 N ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 14401.000.200. DY MX # m/ Q" U. l1 R- L8 C, P+ T% k
L7 l7 j- ?- Z) V# }# S1 j! P, f
5 l; ]% V' V/ F+ B- [$ n+ \& Z+ v
** PLOT CARD. 0.100E+01 0.000E+00 0.800E+03 1 19401.000.800. MX R1
& w1 ]6 X4 [5 x9 m
3 ]! g+ E; @# a) V0 e% l4 ?1 P/ m+ E( w# q
* y1 C( x/ Y6 X ** PLOT CARD. 0.100E+01 0.000E+00 0.400E+03 1 19401.000.400. MX R1 9 H. ^( ~$ {; _: P
/ ?3 s* @! f' x; | N) r) A& H
9 i- s$ ^, g# I7 W- d; `! V
4 p5 I8 x t$ W ** PLOT CARD. 0.100E+01 0.000E+00 0.200E+03 1 19401.000.200. MX R1
+ ^" |) T+ m, v. ?% s
! _# e) S) [& Q5 d! T
: p, v. B8 q: l$ y7 e0 O+ b
5 l" p" _6 i8 S U8 `8 H5 r2 D, ?4 k BLANK CARD TERMINATING PLOT SPEC. CARDS. 1
4 Z. z0 f J* {. l+ ~" x$ L( \( S
( O1 h& {* j$ l. l% Z8 T) r1 [ CORE STORAGE FIGURES FOR PRECEDING DATA CASE NOW COMPLETED. --------------------------------------- PRESENT PROGRAM
8 I# w: ^! F( r A VALUE OF -9999 INDICATES DEFAULT, WITH NO FIGURE AVAILABLE. FIGURE LIMIT (NAME)4 T' J c% O) @: T
SIZE LIST 1. NUMBER OF NETWORK NODES. 5 2002 (LBUS)8 I3 G8 ], I6 _6 |( M/ e; {
SIZE LIST 2. NUMBER OF NETWORK BRANCHES. 3 4500 (LBRNCH)
0 }8 \ o- A4 P# { SIZE LIST 3. NUMBER OF DATA VALUES IN R, L, C TABLES. 3 4500 (LDATA)0 [7 ?2 e5 ?& D2 z
SIZE LIST 4. NUMBER OF ENTRIES IN SOURCE TABLE. 1 1500 (LEXCT)
: M5 t% N: `# b! B. i1 H SIZE LIST 5. STORAGE FOR (Y) AND TRIANGULARIZED (Y). NO. TIMES = 1 FACTORS = 3 9 90000 (LYMAT)" O+ R1 l) b \, ~1 O% s
SIZE LIST 6. NUMBER OF ENTRIES IN SWITCH TABLE. NO. FLOPS = -9999 2 800 (LSWTCH). L9 ]5 a- O' O: L2 O0 E' S
SIZE LIST 7. NUMBER OF TOTAL DISTINCT ALPHANUMERIC (A6) PROGRAM NAMES 2 2500 (LSIZE7)
1 o* _: ], i% |) z* x% f SIZE LIST 8. NUMBER OF PAST HISTORY POINTS FOR DISTRIBUTED LINES. -9999 90000 (LPAST)) H0 n3 n0 D: R# n& v
SIZE LIST 9. NUMBER OF NONLINEAR ELEMENTS. 0 250 (LNONL)6 D+ P2 F, a1 ~2 I& ~9 t* [
SIZE LIST 10. NUMBER OF POINTS DEFINING NONLINEAR CHARACTERISTICS. 0 800 (LCHAR)0 T `$ |2 a* k5 }3 {- ?3 o
SIZE LIST 11. NUMBER OF BRANCH OR SELECTIVE-NODE-VOLTAGE OUTPUTS. 2 1500 (LSMOUT)
0 ^/ L% z; f5 x# P; b SIZE LIST 12. NUMBER OF OUTPUT QUANTITIES (LIMITED ONLY WHEN PRINTING MAX ABSOLUTE VALUES). 3 1500 (LSIZ12)& t3 U) ^* N& d0 B7 \0 q
SIZE LIST 16. TOTAL NUMBER OF TYPE-59 S.M. MASSES. 0 300 (LIMASS)1 q$ f; x7 q; Z7 D. @5 ]
SIZE LIST 17. NUMBER OF DYNAMIC SYNCHRONOUS MACHINES. 0 9 (LSYN) Q% p1 ^7 m9 T4 k5 X/ V1 _
SIZE LIST 18. NUMBER OF BRANCH POWER-AND-ENERGY OUTPUTS. 0 50 (MAXPE)
% l. H5 i% I9 a. g* ]/ b7 k! \ SIZE LIST 19. FLOATING-POINT WORKING SPACE FOR ALL TACS ARRAYS. 137 10000 (LTACST); A( M5 }7 D" W- R
SIZE LIST 20. RECURSIVE CONVOLUTION PARAMETER STORAGE FOR NON-COPIED BRANCH COMPONENTS. 0 10000 (LFSEM)' k' L/ U1 N- n
SIZE LIST 21. TOTAL STORAGE CELLS FOR MODAL-PHASE TRANSFORMATION MATRICES. 0 3000 (LFD)3 S4 d1 |! M3 z4 V
SIZE LIST 22. NUMBER OF CELLS FOR CONVOLUTION HISTORY. -9999 5400 (LHIST)) c6 A. U7 k6 @, L
SIZE LIST 23. GIANT ARRAYS FOR RENUMBERING AND STEADY-STATE SOLUTION CALCULATIONS. 4 90000 (LSIZ23)0 y4 k# p, x: W6 w5 f
SIZE LIST 24. NUMBER OF PHASES OF COMPENSATION, BASED ON MAXIMUM NODES. 0 9 (NCOMP)
6 r" q9 O) a2 r1 B* k% r( ] SIZE LIST 25. FLOATING-POINT WORKING SPACE FOR U.M. ARRAYS. -9999 1800 (LSPCUM)
0 Z( _" p6 E- Z) E4 ?& b SIZE LIST 26. SQUARE OF MAXIMUM NUMBER OF COUPLED PHASES. -9999 5000 (LSIZ26). @4 r! l4 Q9 Q8 N+ G
ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP386) TIME =08/20/09 13.58.37 PLOT FILE = PLOT.PL4
5 L9 I# \7 D" f+ w. h( O' S, L6 x ASSOCIATED USER DOCUMENTATION IS THE 864-PAGE EMTP RULE BOOK DATED JUNE, 1984. VERSION M40. VARDIM TIME/DATE =1637223 960610% v* M0 l) ]1 q6 _
INDEPENDENT LIST LIMITS FOLLOW. TOTAL LENGTH OF /LABEL/ EQUALS 1637223 INTEGER WORDS. 2002 4500 4500 1500 90000+ e: @" b' i, o: x2 h p8 U( `; o
800 2500 90000 250 800 1500 1500 300 9 50 10000 10000 3000 5400 90000 9 1800 5000 300
" h0 |& k) E+ z1 E; U+ g --------------------------------------------------+--------------------------------------------------------------------------------
: D" J8 i, y" e: }; q7 ]6 { DESCRIPTIVE INTERPRETATION OF NEW-CASE INPUT DATA 1 INPUT DATA CARD IMAGES PRINTED BELOW, ALL 80 COLUMNS, CHARACTER BY CHARACTER.
, ?5 L/ m% A" U7 G9 i3 z0 v 0 1 2 3 4 5 6 7 8
0 s8 W! M7 c; d/ O' i* d5 C, i- B 0 0 0 0 0 0 0 0 0
2 A( L0 g+ L7 X0 C! X! c+ E' d --------------------------------------------------+--------------------------------------------------------------------------------* s% R$ c' c0 k2 x4 O9 ~4 `( N! X7 ?
MARKER CARD PRECEDING NEW DATA CASE. 1BEGIN NEW DATA CASE
, s/ O( P7 Z( V: F8 P5 x BLANK TERMINATION-OF-RUN CARD. 1 |
|