TA的每日心情 无聊 2019-12-22 22:50
签到天数: 11 天
连续签到: 1 天
[LV.3]偶尔看看II
累计签到:172 天 连续签到:1 天
电子图书
电子图书名:
Design_of_Direct-driven_Permanent-magnet_Generators
编者:
Göteborg, Sweden.
内容简介:
This thesis presents an investigation of how a direct-driven wind turbine
generator should be designed and how small and efficient such a
generator will be. Advantages and disadvantages of various types of
direct-driven wind turbine generators are discussed, and a radial-flux
permanent-magnet generator connected to a forced-commutated rectifier
is chosen for a detailed theoretical investigation. Further, a design
method is developed for the electromagnetic part of the chosen generator
type. The generator is optimized with a simplified cost function which,
besides including the cost of the active generator parts and the cost of the
structure, also includes the cost of the average losses. Therefore, a method
to calculate the average losses is derived. The design method is used to
investigate the optimization of a 500 kW generator, and the size, efficiency
and active weight of optimized generators from 30 kW to 3 MW are
presented. A result of the investigation is that the outer diameters of the
direct-driven generators are only slightly larger than the width of
conventional wind energy converter nacelles. A comparison of average
efficiency shows that direct-driven generators, including the losses in the
frequency converters, are more efficient than conventional wind energy
converter drive trains. Compared with other direct-driven generators, the
proposed generator type is small, mainly because of the forced-
commutated rectifier and because the generator is not required to produce
a pull-out torque higher than the rated torque.
所属专业方向:
电机
出版社:
Department of Electric Power Engineering
来源:
网络
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
Table of Contents" H8 s* M$ a0 p2 [( I7 ?3 H
Abstract 36 K5 \* A$ x$ h! Y$ N. V
Preface 3, I. Y# p( |! t# {( [$ P4 Q2 Y
Table of Contents 4
b! l$ O$ o$ ]& e/ F List of Symbols 6
- u9 m( o' V! c 1 Introduction 117 e; `% @( b2 f ]
1.1 Why Use Direct-driven Wind-turbine Generators 11
: {' ]$ M1 k+ W7 ?/ U! n [ 1.2 Differences Compared with Conventional Generators 12
7 v' g5 e/ `% T) o; S) C$ Y; F% w 1.3 Proposed Generator Types 12
2 m! Y# {4 v# A+ f& V" f% a/ i 1.3.1 Sector Induction Generator 127 u |9 J9 K6 K/ D- w1 n+ `
1.3.2 Electrically Excited Synchronous Generator 13
& s# U5 t5 u$ l3 ^ 1.3.3 Switched Reluctance Generator 14
# Z7 g7 U! O( z( P6 W 1.3.4 Permanent-magnet Radial-flux Synchronous Generator 14' p6 r1 e. V) Y9 h' X" Z8 p
1.3.5 Axial-flux Generators 168 `1 u4 w; |$ t3 H7 M$ u/ y/ z
1.3.6 Transversal-flux Variable-speed Generator 17; K" G) V/ h8 _, T( H: f. ~& N D$ F
1.4 Discussion of Earlier Research 19' G, m6 u. _% D7 v
1.5 Goal and Outline of the Thesis 19
3 q6 I/ m+ E: a: E 2 Generator Specification and Cost Function 21
$ K a- \) `/ v* V `7 |% `3 ? 2.1 Specification 21
9 h9 E# S, c# V N 2.2 Generator Cost Function 235 F2 I: M: N& ^" k; h+ {% {
2.2.1 Cost of Active Parts 245 E1 E8 d9 W: K9 A5 o0 B$ q- H" V
2.2.2 Cost of Structure 24( w' p( \5 s7 Z. T) N3 a3 i' x
2.2.3 Cost of Average Losses 24& e5 Z2 B3 [5 G3 c" l
2.2.4 Total Cost Function 26
+ r6 G0 e9 d3 u& f 3 Calculation Method for the Average Losses 27+ W8 c. d% t, u- H
3.1 Average Losses 27
8 ^1 i' \; W) n+ p& i 3.2 Average Efficiency and Average Power 29
/ L, Q$ u* {9 _$ [3 f- x) ~! S) i 3.3 Determining Average Loss Factors 303 |$ _4 v" j- ~' W$ _2 P, _* u
4 Generator Types 37
5 G" Z g3 K$ } 4.1 Electrical Excitation or Permanent Magnets 37% e2 ]! h5 {- }, Z" O2 k1 d
4.2 Direct Grid Connection or Frequency Converter 39
) Y- U# U* n( n+ k: M5 w 4.3 Surface Magnets or Flux Concentration 40' P. x5 U- v2 @9 h, _
4.4 Slot Winding or Air Gap Winding 41* @! t9 ?& ~/ w$ m7 A6 l
4.5 Radial-, Axial- and Transversal-flux Machines 42$ X! @$ c0 n2 X6 @) q
4.6 Forced-commutated Rectifier or Diode Rectifier 44
6 S* M% |* b2 P% K' y5 [# e 4.6.1 Generator Model 45
) x/ T+ r' C" j# G2 f6 t6 M, o 4.6.2 Diode Rectifier 45
; J6 ^# j6 q* r1 y- Y 4.6.3 Forced-commutated Rectifier 465 w9 Q) N$ A R) d" F2 O6 h
4.6.4 Rectifier Comparison 48
( E G. L- j" q9 K9 \( c 4.7 Chosen Generator Type 51
, d9 S0 r9 q% L3 t 4.7.1 Basic Generator Concept 51
$ F- G) I: w8 P" \4 A3 B0 S 4.7.2 Details of the Chosen Generator 51
; V" ~% {3 Q. @# G 4.7.3 Materials 52+ b3 ]& R `1 A. b& O
5 Design Method for a Permanent-magnet Generator 55
* |+ o( C0 _" C8 D3 o 5.1 Design Variables 55
! K; I- S. H+ k7 Q% t; D$ O 5.2 Design Equations 583 z* v0 M3 x% s1 V/ T6 \
5.2.1 General Definitions 58
( {2 ?+ U; }6 V2 Y, X 5.2.2 Magnetic Circuit 607 ], m! T7 E0 f7 w7 B
5.2.3 Stator Inductance and Resistance 61
$ K& x8 M+ [5 l3 h7 w 5.2.4 Material Volume and Weight 63" k; L3 m1 u) H1 ~* l$ L- {) o
5.2.5 Losses 64
- Z, s& V5 B. K( p6 y6 A 5.2.6 Voltage, Power and Efficiency 67
$ Y" Y* Q1 L; y) a Y 5.2.7 Thermal Model and Temperature Rise 68
4 K" t0 N. c5 [0 j& I 5.2.8 Irreversible Demagnetization 69
+ |/ h6 O" ~& y/ K1 K+ O# ]+ E1 O 5.3 Calculation Procedure 71
1 l1 Z# _- T# e/ ?+ p; C 5.4 Test of the Design Method 729 A# X9 i* X, {+ q. ], e- W, K
5.4.1 Comparison with Finite Element Calculations 72
/ t4 | q$ M7 Y0 ?4 O 5.4.2 Test of Thermal Model 73, P( t( c9 e5 ]) I
6 Generator Optimization 77, ^! R' ^, x; i7 ?8 X' \0 j0 }: r
6.1 Optimum 500 kW Generators 77
4 Z( M' p4 J& A% r! ~6 i 6.1.1 Optimized Reference Generator 771 l1 u( c3 B0 L5 W4 [" [% ~1 h# f; x
6.1.2 Optimized Generators for 50 Hz and 200 % Peak Power 80
6 ]) S- Z4 g8 l. h6 F' t- x 6.1.3 Optimization Using the Losses at Rated Load 82
4 z2 M8 I* Y# D! c( ` 6.2 Sensitivity to Variable Changes 840 G" z8 K5 u6 h* `' H
6.3 Sensitivity to Cost Function Changes 86
; ]9 X! P8 T8 [* g I! |6 Z' p 6.3.1 Cost of Losses 86. j; T* H9 g& D% n! p
6.3.2 Cost of Iron and Copper 874 W3 i n1 v( D @9 f) t$ t
6.3.3 Cost of Permanent Magnets 88
+ `# E/ M, F; @ 6.3.4 Cost of the Structure 89& H s8 Q+ c+ T8 X
6.4 Optimum Generator Diameter 90 X% T( T% j$ F
6.5 Typical 500 kW Permanent-magnet Generator 92
/ I: i" t3 y) T) ~ 7 Design and Comparison 95
! k1 h0 t( |4 Y! t! X 7.1 Generators from 30 kW to 3 MW 95
+ c8 F; T- U' R" d P 7.1.1 Generator Data 95
* g4 N. Y: J S: o 7.1.2 Optimum Variables and Parameter Values 97" u4 E5 ?; M8 T
7.1.3 Power Limits For the Direct-driven Generators 100
% d0 b& h& ~! `5 D 7.2 Comparisons 102 V# d% o# S9 w5 u1 [/ o
7.2.1 Comparison with Conventional Generators and Gears 102" t3 [7 Y" `) i! @* [) ]
7.2.2 Comparison with Other Direct-driven Generators 104
2 g* m4 p& P, `) S& l' V 8 Conclusions 107
% ~! N/ L4 v m 8.1 Different Generator Types 1070 d) ?7 G5 h* {( i4 j
8.2 Generator Design and Optimization 108% g* `2 P9 ]5 h% I; p
8.3 Designed Generators and Comparison with Other Generators 108) z8 f1 p! g9 E& v% D. r
8.4 Further Work 109
% V7 W6 Z$ P, t8 b0 N& j! R5 h References 1118 v$ Q: b" [! A; o; V8 b# o9 e
Appendix A Magnetizing Inductance 115
, c0 W- d4 N9 W3 O( m V Appendix B Thermal Model of the Generator 1192 g& h" o6 ?: u7 \9 }
Appendix C Average Efficiencies 131
楼主热帖