TA的每日心情 无聊 2019-12-22 22:50
签到天数: 11 天
连续签到: 1 天
[LV.3]偶尔看看II
累计签到:172 天 连续签到:1 天
电子图书
电子图书名:
Design_of_Direct-driven_Permanent-magnet_Generators
编者:
Göteborg, Sweden.
内容简介:
This thesis presents an investigation of how a direct-driven wind turbine
generator should be designed and how small and efficient such a
generator will be. Advantages and disadvantages of various types of
direct-driven wind turbine generators are discussed, and a radial-flux
permanent-magnet generator connected to a forced-commutated rectifier
is chosen for a detailed theoretical investigation. Further, a design
method is developed for the electromagnetic part of the chosen generator
type. The generator is optimized with a simplified cost function which,
besides including the cost of the active generator parts and the cost of the
structure, also includes the cost of the average losses. Therefore, a method
to calculate the average losses is derived. The design method is used to
investigate the optimization of a 500 kW generator, and the size, efficiency
and active weight of optimized generators from 30 kW to 3 MW are
presented. A result of the investigation is that the outer diameters of the
direct-driven generators are only slightly larger than the width of
conventional wind energy converter nacelles. A comparison of average
efficiency shows that direct-driven generators, including the losses in the
frequency converters, are more efficient than conventional wind energy
converter drive trains. Compared with other direct-driven generators, the
proposed generator type is small, mainly because of the forced-
commutated rectifier and because the generator is not required to produce
a pull-out torque higher than the rated torque.
所属专业方向:
电机
出版社:
Department of Electric Power Engineering
来源:
网络
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
本帖最后由 amfk2006 于 2010-6-23 20:01 编辑
0 U& R4 Q/ K4 P+ S# ~/ M9 \
1 u* z' n4 B' I9 n3 |. D } Table of Contents+ l& J6 Z: v8 g7 b4 l2 W" M
Abstract 38 T" R- c# U+ |6 ^
Preface 3
$ m; u) A8 D4 K4 p Table of Contents 4
/ [1 _' u( F" x! `! A- B List of Symbols 64 _4 H5 T G' Y+ l2 {
1 Introduction 11' s; U7 Z2 W) f4 C3 W
1.1 Why Use Direct-driven Wind-turbine Generators 114 P5 n# g7 ]( x" A, V: A
1.2 Differences Compared with Conventional Generators 12% z- r& K( S [$ {
1.3 Proposed Generator Types 12( [! z7 a0 c$ V+ C3 g6 ~$ v3 P
1.3.1 Sector Induction Generator 120 [, J; U4 D* Q, q; C# }
1.3.2 Electrically Excited Synchronous Generator 13' X" N2 m9 a3 U. q0 k; L+ e
1.3.3 Switched Reluctance Generator 147 }( c; q5 E: c
1.3.4 Permanent-magnet Radial-flux Synchronous Generator 14, q9 Q8 r- B. x- m7 k
1.3.5 Axial-flux Generators 16, c7 {8 C$ \6 Y% |& j6 d' t
1.3.6 Transversal-flux Variable-speed Generator 17
: H- ^6 n* Y* J 1.4 Discussion of Earlier Research 19" }# @" ^& j1 U/ X6 @& z0 @/ d
1.5 Goal and Outline of the Thesis 19
- [. C3 ~1 W4 D- C& k4 ~ 2 Generator Specification and Cost Function 21
! z8 ]4 F# [: o& D! a6 H* u( g 2.1 Specification 21, p, k7 H' c' J: D
2.2 Generator Cost Function 236 M- o6 Z* E% n" E4 e! t$ ^8 w
2.2.1 Cost of Active Parts 24
3 D2 l7 x, Z. O/ L' y 2.2.2 Cost of Structure 241 d; k% D/ X; x l" |- u
2.2.3 Cost of Average Losses 24# i' I4 @' ^( v" m3 b
2.2.4 Total Cost Function 268 I( R* r; V, N9 v3 I7 \
3 Calculation Method for the Average Losses 27; ]9 `. u1 W9 U* h9 w
3.1 Average Losses 27
- `9 n' P8 N0 c( l0 R 3.2 Average Efficiency and Average Power 299 t6 S, z! V" T$ s+ I5 S& q" r
3.3 Determining Average Loss Factors 30
4 \. p5 o( W' ~- z, p 4 Generator Types 37
& o* G, v9 ~* d, V 4.1 Electrical Excitation or Permanent Magnets 37
: g5 _ [( B% ~$ |5 U5 v 4.2 Direct Grid Connection or Frequency Converter 39
+ W' i) K' [7 R! T; \3 _; { 4.3 Surface Magnets or Flux Concentration 40" F; y' |4 C2 @1 Y5 J/ |
4.4 Slot Winding or Air Gap Winding 416 @4 U; `* }0 x% L+ j. M# W
4.5 Radial-, Axial- and Transversal-flux Machines 42 b1 j. Z' w4 E7 Q* h, B+ f3 v7 C! N
4.6 Forced-commutated Rectifier or Diode Rectifier 44
+ P, C5 F# X7 c- D& ^% x 4.6.1 Generator Model 45( y6 I9 K3 x0 m* s* `
4.6.2 Diode Rectifier 45
, Q, @- M3 A1 J" h 4.6.3 Forced-commutated Rectifier 461 y/ c7 w) T0 N! O1 U- n! K' L
4.6.4 Rectifier Comparison 48$ C5 {. D. J0 i3 q X& x$ a2 l
4.7 Chosen Generator Type 51
( y; S' n8 h: k0 S1 R r/ O! e 4.7.1 Basic Generator Concept 51
7 N) E& I" Y* a# b 4.7.2 Details of the Chosen Generator 51
/ h# l1 d# F, y# |0 Z 4.7.3 Materials 52
( }6 c% Y( Q6 h+ F0 h 5 Design Method for a Permanent-magnet Generator 556 H% m: p E! R- p' @( n
5.1 Design Variables 55
+ a/ t7 H: s# q+ Z' d* r# C2 ]& x8 W 5.2 Design Equations 58
% _4 ^4 N; x# l D2 P' g5 S- W 5.2.1 General Definitions 58
4 a3 l& c( ^! @! c& k 5.2.2 Magnetic Circuit 60+ `9 C2 P7 K9 ?$ {% o
5.2.3 Stator Inductance and Resistance 61
( Z# l/ l! ^ ^' `8 }- c 5.2.4 Material Volume and Weight 63
9 C9 L+ I& w) j$ w* ]' K5 m 5.2.5 Losses 64
: G; u/ n7 i! }: P; P' e' P 5.2.6 Voltage, Power and Efficiency 67' x9 u& x, ?. P- p2 S# C( d6 E
5.2.7 Thermal Model and Temperature Rise 68
- l. ^0 ~) I' l) T0 B6 p3 X 5.2.8 Irreversible Demagnetization 69
" d+ \4 m( i# x/ A, x" a) M0 p 5.3 Calculation Procedure 71
4 p( K6 [3 B+ _5 E 5.4 Test of the Design Method 72
8 p+ r5 e( |/ e, }% m 5.4.1 Comparison with Finite Element Calculations 72, Y3 z: \* e0 ~/ N
5.4.2 Test of Thermal Model 73
9 i. `) |; z+ a2 H# {- W 6 Generator Optimization 77
2 u( Q8 ~8 ? p1 Z" `- d 6.1 Optimum 500 kW Generators 77
% o1 F$ p+ Y _ A, F 6.1.1 Optimized Reference Generator 77
& o% H! k) U, U6 r- M 6.1.2 Optimized Generators for 50 Hz and 200 % Peak Power 80
/ }4 G6 u# v k, w$ r% v 6.1.3 Optimization Using the Losses at Rated Load 82
# }) Q: |# W; F% ^* x8 H 6.2 Sensitivity to Variable Changes 84' _' t$ ]' V$ Y+ I
6.3 Sensitivity to Cost Function Changes 86$ M7 R: n* `7 I1 _9 U* _) b
6.3.1 Cost of Losses 86/ Z0 x9 K( s( U* Z
6.3.2 Cost of Iron and Copper 87
# L4 p8 K) p( {8 y& [ ~ 6.3.3 Cost of Permanent Magnets 88
) C: K/ X/ K X- J1 Q% h) w1 | 6.3.4 Cost of the Structure 896 o& a2 E; S! l, o2 C
6.4 Optimum Generator Diameter 90% e2 `3 @ q/ j/ B( r0 J0 n3 j
6.5 Typical 500 kW Permanent-magnet Generator 92
1 _+ ], k2 _' @6 H* u* o 7 Design and Comparison 957 F7 z+ `6 M, W/ J" J0 Z% x
7.1 Generators from 30 kW to 3 MW 95
0 m3 _+ `* J) `0 @9 S! O" z1 z/ f 7.1.1 Generator Data 954 U) k8 v3 V3 I8 C* {8 ^
7.1.2 Optimum Variables and Parameter Values 97
1 g$ ^/ \5 E- f) F% B$ `, P 7.1.3 Power Limits For the Direct-driven Generators 100
) S' A1 }3 P. ?5 l 7.2 Comparisons 102* _5 s4 V1 H8 @
7.2.1 Comparison with Conventional Generators and Gears 102
' C+ `) M* e+ u% N' i. \ 7.2.2 Comparison with Other Direct-driven Generators 1046 ^4 ? a/ R2 l
8 Conclusions 107; E3 ]5 s* x- @3 ]) D0 {4 O V* i0 ~* W( T
8.1 Different Generator Types 107
, B& w% U% E: A. x3 z8 d! b2 Y 8.2 Generator Design and Optimization 108* U8 R3 L- `( y
8.3 Designed Generators and Comparison with Other Generators 108
) ]# q6 B* ?7 v& j4 L+ N* d* w4 g 8.4 Further Work 109
% |4 `% N% P# Y: K( k7 V0 | References 111$ u3 \( |0 o8 i# W! @
Appendix A Magnetizing Inductance 115
' {4 q% g( O q$ T5 J Appendix B Thermal Model of the Generator 1198 Y( P. F1 z+ D4 M
Appendix C Average Efficiencies 131
楼主热帖