% y# {5 ?1 m6 \' s在英国电网中,典型的电能流向主要是从北向南,在低压用户端(电压等级400V)大多有CHP和家庭使用的太阳能等。原来的输电网还部分存在,但新建最多的就是交互式供电,如交互式的家庭式供电可将家用剩余的电能反送到电网中,这些做法在英国的电力法中已明确规定。英国的移动通信公司正在推广其开发的一项技术——智能分散能量控制系统,运用手机来控制家庭微型冷热电联产机组的启停。家庭成员可以在回家之前启动家庭热电联产机组,也可根据市场价格决定是否发电,这意味着可能会有很多小型、家庭式机组向电网供电。因此,电网公司面临着技术上的改进和创新(如需要双向保护等),这种交互式供电对电网的稳定控制、调度造成很大困难。这不但给电网技术、体系、市场、管理等方面带来很大影响,而且对传统的供电、发电、输电、配电同样也造成不同程度的影响。目前,英国政府鼓励每个家庭都拥有小型的发电设备,如在家中安装CHP,其能源的利用率可能会比大型发电厂还高,家庭式CHP目前还没有对电网造成大的影响。2 t9 E5 {! W& `/ j$ E8 O8 E# D
' T# @) }* H( b% T4 t! \% `0 ]
未来电网的发展形式与世界各国所关心的21世纪最重要的议题即可持续、环保的发展和新能源与可再生能源有关。 + V" n2 m. l, Y# b) Z0 S* P+ H* S [ q! X+ D8 u( e* `
2.2 欧洲电网技术! u/ T Y! R* T. X- }
, a5 h1 m W8 t0 k5 c J" U- }欧洲电网技术发展趋势主要是面向可再生能源系统和未来的电力系统,并提出了近期、中期及长期的研究计划,其中主要研究重点放在能量储存和电能质量的保证方面。 - _6 z+ a7 @. `2 @, A) d9 U ] 6 i" o# P3 a5 L2.2.1 储能技术; J; g; G( F& q5 F+ g
6 }9 @+ v: \8 g8 l% {
在可再生能源发展中,作为电网技术核心的储能技术,是解决可再生能源间歇性供电问题最有效的方法。在中长期发展阶段,大量不同形式的嵌入式发电方式的引入,尤其是大规模的间歇性可再生能源的应用,整个系统运行的安全性与稳定性取决于这些联合的分布式发电系统,供需平衡将是需要解决的主要问题。储能技术主要包括:抽水蓄能、压缩空气蓄能(CAES)、燃料电池、飞轮储能、超导磁储能(SMES)、超级电容器储能(比普通电容器高20—1000倍)、热储能等。2 z* c- Y" ] N, R
6 C2 @8 h6 O0 l" Y1 w, ]如在英国科学基金和国家项目中,有关英国电网的大部分支撑技术都是储能技术。欧共体同样关注储能技术的发展,它是解决可再生能源的有效利用问题的关键。储能技术,尤其是将分布式储能技术应用到一些变电站,建造低成本、高密度、分散式的储能装置,对保证电网的稳定性、可靠性有很大的好处,对发展大电网技术也很有利。在国外能源电力方面,这些储能技术可以支持不同能源的开发和利用。 6 u3 Q2 q) ^ x! S4 d4 y& y5 o1 D& z1 Z
2.2.2 智能电网技术 & S- T, n; }" d* y* A7 K9 m; k+ S4 _& N+ n
欧盟理事会在2006年的绿皮书(Cteen Paper)“欧洲可持续的、竞争的和安全的电能策略(A European Strategy for Sustainable,Competitive and Secure Energy)”强调欧洲已经进入一个新能源时代。欧洲能源政策最重要的目标必须是供电的可持续性、竞争性和安全性,从而需要通过制定一系列政策来实现。欧洲电力市场和电网必须面对这些新的挑战。未来整个欧洲电网必须向所有用户提供高度可靠、经济有效的电能,充分开发利用大型集中发电机和小型分布电源。智能电网技术是保证欧盟电网电能质量的一个关键技术和发展方向。 4 y- ?5 d. T+ P, [ / n, t( C* `9 U3 o; _+ y6 _- f智能电网是为满足欧洲未来供电网需要而进行的大胆尝试,其特性:一是柔性的(Flexible),满足用户需要;二是易接入的(Accessible),保证所有用户的连接通畅,尤其对于可再生能源和高效、零或低CO2排放的本地发电;三是可靠的(Reliable),保障和提高供电的安全性和质量;四是经济的(Economic),通过改革及竞争调节实现最有效的能源管理。智能电网结构示意如图2。 , G8 T2 P+ L1 u7 l% W2 x0 n" H7 Q( U3 g( P- G
+ y4 ^0 U% M! s) o5 j5 p: l V
4 S2 T1 a& S0 E( G4 u
智能电网的研究主要涉及以下几个方面:一是智能配电结构;二是智能运行,电能和用户适应性;二是智能电网管理;四是智能电网的欧洲互用性;五是智能电网的断面潮流问题。1 e+ g1 J" d" L$ Z C3 b$ ^' M2 t
+ h4 F) j+ @% F6 w/ ?3 u/ o实现智能电网正常运行所需的技术:一是现有配电网技术;二是新型网络技术,以提高电能传输能力和减少损耗,如气体绝缘输电线路(GIL),超导性、高运行温度、柔性交流输电(FACT)技术等;三是广域通信,保障网络自动化、在线服务、有功运行、需求响应和需求侧管理(DSM);四是电力电子技术,改善供电质量;五是静态储能装置。+ M [5 e0 E' O
/ a; E0 P' g! q9 A
实现智能电网运行的特性需要采用新技术,新的电网技术可增加电能传输量和减少能量损耗,提高供电效率,而电力电子技术则可改善供电质量。先进的仿真工具促进创新技术的应用。通信、测量和商业系统的发展在不同程度上为系统打开新通道。3 s' w X( ~% w/ w
1 W4 P* C0 d# X" r D7 [
3 与未来电网相应的新能源和可再生能源政策 % B2 ~) i) @) m: d h' Y/ k4 `& O0 D& `. A. j
3.1 欧盟新能源和可再生能源发电情况及相关法规指令 . I, p" b, B/ Y. B/ m& O, o1 }6 {" G e; W1 y$ }4 k; b" O% E
新能源与可再生能源,特别是风能、水电、太阳能和生物质能的发展,是欧盟理事会能源政策的中心目标。欧盟于1997年发表了《能源的未来:可再生能源》的白皮书,2000年发表了《朝着欧盟能源供应安全的战略》的绿皮书,并采取了一些政策鼓励各国更多使用可再生能源电力。2007年春季欧盟理事会上各成员国通过了到2020年实现可再生能源利用占总能源的20%,并且生物燃料能源利用占10%的发展目标,确定可再生能源成为欧洲未来能源供应的支柱。2008年1月23日欧盟理事会颁布了可再生能源框架指令(Renewable Energy Framework Directive)。2007年11月22日,欧盟理事会提交欧洲能源技术战略规划(the European Strate SicEnergy Technology Plan,SET-Plan)。规划中提出,欧盟实现2020年和2050年战略目标,需要从4个方面着手:一是在能源工业领域制定新措施,加大财力和人力投入,提高能源利用研究和技术创新能力;二是建立欧盟能源科研联盟,加强大学、研究院所和专业机构间的科研合作;三是改造和完善欧盟能源基地设施,建立新的欧盟能源技术数据系统;四是建立由欧盟理事会和各成员国参加的欧盟战略能源技术小组,以协调欧盟与成员国间的政策和计划。6 p9 X. r9 k; S7 H