|
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
分析这个专业还要从名字开始。 : X4 V! }) p' v' {; @% f$ n+ @
一、电气工程(Electrical Engineering?简称EE)是现代科技领域中的核心学科之一,更是当今高新技术领域中不可或缺的关键学科。例如正是电子技术的巨大进步才推动了以计算机网络为基础的信息时代的到来,并将改变人类的生活工作模式等等。 7 A- t- g3 s% n' c% b
从某种意义上讲,电气工程的发达程度代表着国家的科技进步水平。正因为此,电气工程的教育和科研一直在发达国家大学中占据十分重要的地位。 7 f' P) m6 G- j2 a V1 r; Q. b
美国大学电气工程学科在机构名称上有的学校称电气工程系,有的称为电气工程与信息科学系,有的称为电气工程与计算机科学系等等。该学科(系)在科研、教学及学术组织形式上与国内电气工程学科有较大不同。了解国外学科状态及教学、科研方向,对调整我们的学科方向、提高教学、科研水平具有十分重要的作用。美国4年制本科大学约有2320所,其中按学校综合实力排名或者按研究生院水平排名占前50名的大学,一般认为是美国的一流大学。作者重点收集整理了美国Stanford大学,MIT,加 州大学Berkeley分校、Los Angeles分校、San Diego分校,Cornell大学,宾州大学,加州理工学院,Princeton大学,西北大学, Maryland大学,哈佛大学,John Hopkins大学,Yale大学,Duke大学,Columbia大学,Michigan大学,Georgia理工学院,Illinois大学等50所名牌大学电气工程系(学科)的教学、科研概况,初步归纳出电气工程的概念、影响因素及11个主要研究方向。由于上述大学电气工程学术领域十分宽泛,有些专业术语闻所未闻,因此在翻译上可能有不准确之处,恳请专家学者批评指正。
! D: z* {7 c2 R0 p4 e
' x' W0 i# E: a8 y1、电气工程的定义
. y) P& H" {4 x/ a& J [! F
: ^- m8 d0 j8 t% J' Z5 [传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。此定义本已经十分宽泛,但随着科学技术的飞速发展,21世纪的电气工程概念已经远远超出上述定义的范畴,斯坦福大学教授指出:今天的电气工程涵盖了几乎所有与电子、光子有关的工程行为。本领域知识宽度的巨大增长,要求我们重新检查甚至重新构造电气工程的学科方向、课程设置及其内容,以便使电气工程学科能有效地回应学生的需求、社会的需求、科技的进步和动态的科研环境。
# b' i% W5 ?& ^8 l/ e
2 I. D* \% Q( @* t2、影响电气工程的主要因素
0 C# p) p1 U+ e* L8 q9 M/ e1 k. ?4 t! C
今后若干年内对电气工程发展影响最大的主要因素包括: O4 `7 {1 I, D$ b3 n- } y
8 x6 {! x* t& I; b# F
a、信息技术的决定性影响。信息技术广泛地定义为包括计算机、世界范围高速宽带计算机网络及通讯系统,以及用来传感、处理、存储和显示各种信息等相关支持技术的综合。信息技术对电气工程的发展具有特别大的支配性影响。信息技术持续以指数速度增长在很大程度上取决于电气工程中众多学科领域的持续技术创新。反过来,信息技术的进步又为电气工程领域的技术创新提供了更新更先进的工具基础。
* ? _3 K3 P- T4 t3 l# e- u3 b# q/ k+ R' ~3 @: Q
b、与物理科学的相互交叉面拓宽。 由于三极管的发明和大规模集成电路制造技术的发展,固体电子学在20世纪的后50年对电气工程的成长起到了巨大的推动作用。电气工程与物理科学间的紧密联系与交叉仍然是今后电气工程学科的关键,并且将拓宽到生物系统、光子学、微机电系统(MEMS)。21世纪中的某些最重要的新装置、新系统和新技术将来自上述领域。 0 g: K9 F2 Z# l6 ^) ~" e8 y3 r
) {% c: \- G7 d o* g1 ec、快速变化。技术的飞速进步和分析方法、设计方法的日新月异,使得我们必须每隔几年对工程问题的过去解决方案重新全面思考或审查。这对我们如何聘用新的教授,如何培养我们的学生有很大影响。
. N2 N6 u( y F0 a) E! ^$ J M9 F& I% t
3、教学与科研领域
8 i8 N) ^. N: z& o( j+ _ z
! @! ~' X* r5 {美国主要大学电气工程学科的教学与科研领域简要归纳为11个方向:它们是通讯与网络,计算机科学与工程,信号处理,系统控制,电子学与集成电路,光子学与光学,电力,电磁学,微结构(Microstructure),材料与装置,生物工程
. R6 S0 b9 J1 u( _& z: E f" B# ^" r% g# N5 f
( D$ V5 q( v9 `1 m: ^2 x# D二、自动化(Automation)是指工具或生产过程不依赖或少量依赖人的干预而主要依靠预设指令和程序自动完成工作的过程。
% @" i: [ ^& u# F/ |* h
8 I! k9 e% s% U. \自动化一词最早来源于美国福特公司的机械工程师D.S.哈德,1946年他用这个词来描述汽车发动的工作生产过程。但事实上,自动化科学的基础早在19世纪末期就已经奠定。自动化科学出现的原因是为了控制那些自工业革命来越来越复杂的机械设备,诸如汽车、飞机等。此外现代工业生产上的流水线和精密设备,也越来越难以单纯的依靠人手来控制。这些新产品和技术导致了自动化科学的诞生。同时,应用数学和近现代电子学的发展也为自动化科学提供了理论基础。
: {$ R0 I; W. r* } L6 |+ e, q
0 C0 u" }4 E& m1 X自动化科学以数学和电子学为基础,根据应用对象,还包含力学、热学、电磁学、化学等很多学科,有些极端的研究方向甚至还要包括社会科学。20世纪70年代后,计算机技术和适应计算机技术的新数学方法逐渐取代了源于19世纪末二十世纪初的数学方法和电子学在自动化科学中的地位。而在当今,由于自动控制理论中大量新问题的出现,使得其中涉及的数学和计算机科学问题极端困难。因此,在西方自动化科学已经基本不再作为一个独立学科,而是被分化到数学、计算机科学的研究内容中去。 8 d' [- ^: B& Z' g
' N$ o3 l( O7 k5 F' U) |0 Q采用具有自动控制,能自动调节、检测、加工的机器设备、仪表,按规定的程序或指令自动进行作业的技术措施。其目的在于增加产量、提高质量、降低成本和劳动强度、保障生产安全等。自动化程度已成为衡量现代国家科学技术和经济发展水平的重要标志之一。 |
|