设为首页收藏本站|繁體中文 快速切换版块

 找回密码
 立即加入
搜索
查看: 3537|回复: 2

电力系统震荡与失步(POWER SWING AND OUT-OF-STEP CONSIDERATIONS )

[复制链接]

该用户从未签到

尚未签到

发表于 2007-12-31 22:24:33 | 显示全部楼层 |阅读模式
论文文献
标题: 电力系统震荡与失步(POWER SWING AND OUT-OF-STEP CONSIDERATIONS )
作者: IEEE
所属专业方向: 电力系统
摘要: 介绍电力系统震荡与失步诊断与措施(POWER SWING AND OUT-OF-STEP CONSIDERATIONS )
关键字: 电力系统 震荡 失步
来源: IEEE

马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!

您需要 登录 才可以下载或查看,没有账号?立即加入

×
IEEE 有关电力系统震荡与失步方面的好文章(POW Power System Swing & OOS.rar (623.47 KB, 下载次数: 13) ER SWING AND OUT-OF-STEP CONSIDERATIONS )
"真诚赞赏,手留余香"
还没有人打赏,支持一下
楼主热帖
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

该用户从未签到

尚未签到

 楼主| 发表于 2008-1-19 12:33:35 | 显示全部楼层

论文摘要

4.2 ADDITIONAL POWER SWING DETECTION METHODS
3 {9 |& ~. F$ M2 j4.2.1 Continuous Impedance Calculation3 W* o; f8 h- E4 A
This method determines a power swing condition based on a continuous impedance calculation.
5 {, H% R: o  {. lContinuous here means, for example, that for each 5 ms step an impedance calculation is5 G( u0 k5 }- b9 s! B4 I( C/ t" H
performed and compared with the impedance calculation of the previous 5 ms. As soon as there is8 W4 D+ H9 `% f- m% u: E3 D) \. C
a deviation, an out-of-step situation is assumed but not proven yet. The next impedance that
8 ~, Y- ~, z( ~% p/ _; a% m7 Hshould be calculated 5 ms later is predicted based on the impedance difference of the previous
- _1 V8 Y, y7 {2 j$ Tmeasured impedances. If the prediction is correct, then it is proven that this is traveling impedance.
& o' I4 A3 C" c8 A! |, P0 q1 NIn this situation a power swing condition is detected. For security reasons additional predictive
; e5 n- h7 U! _+ t5 E8 e& @4 ]calculations may be required.
, l9 {4 Q+ `. O/ E& t% PA delta impedance setting is not required anymore, because the algorithm automatically considers/ I  k) |+ X; G# L
any delta impedance that is measured between two consecutive calculations and sets the delta) k9 _  I' U6 v5 |4 h$ {' I
impedance for the next calculation automatically in relation to the previous calculation. This leads6 R6 \% m1 _$ o
to a dynamic calculation of the delta impedance and an automatic adaptation to the change of the
, j4 S$ r7 R: R) E3 t* J1 \: }1 W( Rpower swing impedance. Also the delta time setting is not required anymore because it is& U! y# v7 g+ L
determined by the calculation cycles of the algorithm." O% n/ w' F# H" k
R( j+ i  S: L/ v
X
4 A3 p7 Z! T; hStable power swing3 Q& [9 y$ k  [5 v, R4 t9 S$ T! @6 H  t
impedance trajectory6 V! A! B. y0 j/ L7 F
DZ1 DZ2 DZ3
5 L7 f) J; N6 B* PLoad
( s( ?- H; E) h( ]. r& gFigure 7 Power swing detection with continuous impedance calculation
0 H2 k5 }& U6 Q; P% {As long as the changing impedance vector is not approaching a tripping zone faster than the relay' w, D8 R! ]! a; J. S8 L( b& q
can confirm the out-of-step condition (at least 3 calculations 10 ms) the detection will be successful./ L, ?- m8 o3 ]% n, f* ]
POWER SWING AND OUT-OF-STEP CONSIDERATIONS ON TRANSMISSION LINES
) D+ [/ r+ N+ z" WIEEE PSRC WG D6, j8 i9 }+ }) E4 W+ ]3 n4 P+ G
17 / 59 2005-07-19
4 u& ^  n% _3 g2 h0 K8 L4.2.2 Swing-Center Voltage and its Rate of Change* y: V! k2 I. c5 T
Swing-center voltage (SCV) is defined as the voltage at the location of a two-source equivalent
7 V6 v8 l+ i3 l- @system where the voltage value is zero when the angles between the two sources are 180 degrees  R: N$ [' t, l& D. H
apart. When a two-source system loses stability and goes into an OOS situation after some" h6 c: i" i3 i  ~4 s+ b( o
disturbance, the angle difference of the two sources, d(t), will increase as a function of time. Figure
3 q1 I, e/ d& U0 \  a; Y8 illustrates the voltage phasor diagram of a general two-source system, with the SCV shown as
) s$ E% G% ?% M$ Zthe phasor from origin o to the point o'.( C6 S$ ?. W% S6 a0 }( |7 E8 B, }
o'
5 I+ ]7 z! |0 L" V/ B# U: V8 z: do3 g9 \+ _9 ]* {) f  T7 C
o"* C/ x' K/ M: ?, ?7 d4 x1 d1 ~
Z1S•I Z1L•I
" L5 Q8 v6 U* W( QVS& P6 z9 _! N: A; S
j ER
, ?- l9 B  t0 f. w6 R/ x% Dd
1 ~" y/ }) z, \9 ZSCV
9 Y2 ^0 G2 B! O9 k" cZ1R•I
* h+ K+ W* s/ c  v% |q* F# B, M8 h- W. o  D- \4 N3 K
I$ O# ^+ |, o4 \! b
ES! F  Z1 _- }+ |( |
VR
7 H: {1 \% e7 o5 x- PFigure 8 Voltage Phasor Diagram of a Two-Source System5 c& l: n4 @8 Y& ]8 o
An approximation of the SCV can be obtained through the use of locally available quantities as
) o8 ^+ t" j# @+ B0 M! ofollows:
: E; L' t  z6 |7 m5 \6 _! o8 \SCV »| V | ×cosj S (6)
$ R1 Q) m% R8 h$ e# i9 SWhere |VS| is the magnitude of locally measured voltage, and j is the angle difference between VS
0 V) r* k8 ?. S! ?0 Land the local current as shown in Figure 9. In Figure 9, we can see that Vcosj is a projection of VS* x5 P3 f2 X$ R
onto the axis of the current, I. For a homogeneous system with the system impedance angle, q,7 e. ^2 ?8 F4 [- {$ U
close to 90 degrees, Vcosj approximates well the magnitude of the swing-center voltage. For the+ a6 b7 G) I& }- A% Q# C/ l6 Y
purpose of power-swing detection, it is the rate of change of the SCV that provides the main9 e- Y% w( I% f
information of system swings. Therefore, some differences in magnitude between the system SCV
! s! y. g7 w# R! X" }and its local estimate have little impact in detecting power swings. Ilar [6] first introduced the3 e0 c- a  t# p& q8 `  u* A9 e
quantity of Vcosj for power swing detection.
"真诚赞赏,手留余香"
还没有人打赏,支持一下
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    奋斗
    2019-5-13 11:05
  • 签到天数: 33 天

    连续签到: 1 天

    [LV.5]常住居民I

    累计签到:33 天
    连续签到:1 天
    发表于 2013-6-1 13:52:44 | 显示全部楼层
    谢谢分享                。
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
    您需要登录后才可以回帖 登录 | 立即加入

    本版积分规则

    招聘斑竹

    小黑屋|手机版|APP下载(beta)|Archiver|电力研学网 ( 赣ICP备12000811号-1|赣公网安备36040302000210号 )|网站地图

    GMT+8, 2025-6-8 08:35

    Powered by Discuz! X3.5 Licensed

    © 2001-2025 Discuz! Team.

    快速回复 返回顶部 返回列表