电子图书
电子图书名:
Power Generation from Solid Fuels 2010
编者:
Hartmut Spliethoff
内容简介:
Today, fossil fuels dominate worldwide primary energy consumption. In 2000, about 40% of total primary energy was used for electricity generation, and of this, coal was the fuel for 40%, making it the most important primary energy carrier for power production. Forecasts of future energy consumption predict a further increase of worldwide coal utilisation in the coming 20 years. In comparison to natural gas and oil, coal has the advantage of being the most abundant fossil energy carrier.
所属专业方向:
Power Generation
出版社:
来源:
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
Power Generation from Solid Fuels( I% y, }: T# }: D8 m9 r& Y
Hartmut Spliethoff, P$ w4 M: Q* J. a# J
Edition : 1st$ z1 p6 q7 X3 b! I7 O
Year : [2010]
/ z2 F7 f- d% ]4 K4 R
$ n7 n7 Q% f' M# O, r) q1 o
Power Generation From Solid Fuels 2010.part1.rar
(1.91 MB, 下载次数: 1)
6 A( g8 J" M: }" L
Power Generation From Solid Fuels 2010.part2.rar
(1.91 MB, 下载次数: 1)
+ O8 ^2 L8 ^( i' e2 N4 e4 u
Power Generation From Solid Fuels 2010.part3.rar
(1.91 MB, 下载次数: 1)
8 ~( b- T+ k2 ]1 c+ G i- d7 m
Power Generation From Solid Fuels 2010.part4.rar
(1.91 MB, 下载次数: 1)
. Z. K' }# M/ N- F3 g9 \! C. S
Power Generation From Solid Fuels 2010.part5.rar
(1.91 MB, 下载次数: 1)
0 L3 |, n1 r$ ]& W' u8 Q9 p
Power Generation From Solid Fuels 2010.part6.rar
(1.64 MB, 下载次数: 1)
+ D4 }& _, }, |( P: ~! ] g/ S
' H& j& O; H. H1 I7 e/ W9 {9 c; K* r [Contents]
& N' A# u) ?& Z& [3 o5 D: Y$ S * V8 t7 \: X: x3 j1 ?
1 Motivation 5 F ~! u- g3 a7 b4 h, x# r
1.1 Primary Energy Consumption and CO2 Emissions
, ^+ L; |5 u& W' c7 t- z 1.1.1 Development of Primary Energy Consumption in the Past 40 Years7 n/ G- i( h- }% T* I' d1 v9 `/ Q( _
1.1.2 Developments Until 2030$ V0 b/ F) P: _# H/ U; R' |8 x5 I) b
1.2 Greenhouse Effect and Impacts on the Climate& P; ^+ N# v- z$ \: j/ I- v
1.2.1 Greenhouse Effect$ h& R, z I$ t9 ^1 M1 H( [& A9 D
1.2.2 Impacts.
+ @& T8 @. ^7 b) c t( f 1.2.3 Scenarios of the World Climate
1 G$ E9 w) ?; i/ j0 M$ f 1.3 Strategies of CO2 Reduction) j: |6 f' w s
1.3.1 Substitution
! J: V$ o2 G3 Q. P! N, { 1.3.2 Carbon Capture and Storage (CCS)
/ J" f! ~; @! [# m 1.3.3 Energy Saving
) v% L4 p( y' U) E* S2 d. U 1.3.4 Mitigation Scenarios2 [: @- A+ L& ^
References+ F0 E6 A6 H; @- h
2 Solid Fuels
# i! Z, k- t! P* K' _$ S 2.1 Fossil Fuels
$ \$ F" U# z, F% k0 _8 J 2.1.1 Origin and Classification of Coal Types
$ k- o Z5 q `" V2 S 2.1.2 Composition and Properties of Solid Fuels* B1 E- v) D8 b% k0 \
2.1.3 Reserves of Solid Fuels
5 U5 ?- k( u$ r5 ?4 s 2.2 Renewable Solid Fuels$ L7 B# m6 c0 g8 I$ z& d4 z
2.2.1 Potential and Current Utilisation
k4 h! ~, V9 Z7 {1 h$ z& r2 Q 2.2.2 Considerations of the CO2 Neutrality of Regenerative Fuels# D" v% g" w& o* @( u
2.2.3 Fuel Characteristics of Biomass6 F4 |5 J0 b7 w" H. {9 Y# Q
References6 [! N+ ^* N8 N, R
3 Thermodynamics Fundamentals ( N9 {" B2 Z/ L% F9 H& c+ r7 F
3.1 Cycles! n4 S" V& S# `+ C$ x d2 t
3.1.1 Carnot Cycle, U/ k3 m) `* A) v, |
3.1.2 Joule–Thomson Process/ ~( i/ L, w. x E) E; T5 g" a, v0 Y
3.1.3 Clausius–Rankine Cycle
0 v( j5 X0 f0 r/ }2 v 3.2 Steam Power Cycle: Energy and Exergy Considerations.: M/ o, p: ^- I$ u/ }
3.2.1 Steam Generator Energy and Exergy Efficiencies& o3 ?* ]) m4 C u
3.2.2 Energy and Exergy Cycle Efficiencies
$ G" a4 i! y3 _8 ^ 3.2.3 Energy and Exergy Efficiency of the Total Cycle. n% e" O2 t* j
References
/ S* @; S8 C* V+ l" m* A 4 Steam Power Stations for Electricity and Heat Generation
' ^0 L! G# F6 ?3 o! F9 [1 V 4.1 Pulverised Hard Coal Fired Steam Power Plants5 W2 i3 W' P/ N6 z
4.1.1 Energy Conversion and System Components# n0 F' U7 }6 T# [) `
4.1.2 Design of a Condensation Power Plant' B' A+ [) R% p- {* S) d' m8 ]
4.1.3 Development History of Power Plants – Correlation Between Unit Size, Availability and Efficiency+ D) j) e: n4 a5 H+ a
4.1.4 Reference Power Plant# |9 e$ X! Z# ~- B. N
4.2 Steam Generators' s! e# A6 ]* h$ U! m
4.2.1 Flow and Heat Transfer Inside a Tube& x: ~( a1 w) H6 ?
4.2.2 Evaporator Configurations
/ e- t! L* W2 q: G4 r9 W 4.2.3 Steam Generator Construction Types
5 z) F( ]" h! u! Y0 k$ Z* y 4.2.4 Operating Regimes and Control Modes& K4 p( ^( n, R6 U. E6 g. R0 F
4.3 Design of a Condensation Power Plant+ J# h& _2 s& Y M, A$ [ h) [3 d
4.3.1 Requirements and Boundary Conditions
7 y: [2 X" s! m! y* r( F: n 4.3.2 Thermodynamic Design of the Power Plant Cycle
0 z5 Y9 Z3 b5 q 4.3.3 Heat Balance of the Boiler and Boiler Efficiency
1 f! g9 o* z9 B( t 4.3.4 Design of the Furnace
4 ^ U5 {/ A" v4 o 4.3.5 Design of the Steam Generator and of the Heating Surfaces& d$ i* ^5 ^, O4 [
4.3.6 Design of the Flue Gas Cleaning Units and the Auxiliaries1 ]* ?! N: @! W0 q
4.4 Possibilities for Efficiency Increases in the Development of a Steam Power Plant# A5 ~/ M! H9 c3 j1 a1 A: a
4.4.1 Increases in Thermal Efficiencies6 G7 s: t. C0 K9 T# D
4.4.2 Reduction of Losses
( G( g3 j! _5 R( Q! G! l 4.4.3 Reduction of the Auxiliary Power Requirements; L9 d: ]- i; ?" R; \' j
4.4.4 Losses in Part-Load Operation/ O- n" Y( B: ?$ N" _+ u4 U
4.4.5 Losses During Start-Up and Shutdown0 ^+ x1 T5 e& M5 _$ H
4.4.6 Efficiency of Power Plants During Operation" ]9 a. i' E, j. T3 K+ b" f
4.4.7 Fuel Drying for Brown Coal" K2 Q8 U8 i/ q [
4.5 Effects on Steam Generator Construction+ W. R1 X3 @$ e5 Q* B/ s
4.5.1 MembraneWall
, U7 q9 \" E1 K5 D9 r 4.5.2 Heating Surfaces of the Final Superheater, w# q8 l' H* B, U
4.5.3 High-Pressure Outlet Header
, z6 | P1 }: F3 {, f3 I) c 4.5.4 Furnaces Fuelled by Dried Brown Coal' Y H+ ?* g0 C+ R8 I
4.6 Developments – State of the Art and Future- ]' t$ e1 f8 T4 u4 o( P' m# w
4.6.1 Hard Coal2 s2 J4 |! T8 p5 x) C
4.6.2 Brown Coal2 A: ^0 N; W( V j9 x; q2 N* e
References
# F/ O- {6 t- t 5 Combustion Systems for Solid Fossil Fuels
0 P+ }8 @+ u/ ~ 5.1 Combustion Fundamentals
' } K P! Y7 v9 _ 5.1.1 Drying6 X2 @" x, ]2 [9 U
5.1.2 Pyrolysis
/ _' }0 v7 B% n0 l) \, T, f 5.1.3 Ignition) G: }9 Y: p1 u9 Y
5.1.4 Combustion of Volatile Matter
1 b4 s2 Q& Q* J, B/ t4 \ 5.1.5 Combustion of the Residual Char+ ?# `; {. c0 h% N, Y
5.2 Pollutant Formation Fundamentals
" L* s2 m) V% r6 b" c7 H 5.2.1 Nitrogen Oxides
0 B; j8 b; m. L, V1 U1 a" _% A7 u 5.2.2 Sulphur Oxides
' p. H1 H: T* G r4 @# N 5.2.3 Ash formation. d0 N `' n- a @: o
5.2.4 Products of Incomplete Combustion
& l. P. y0 C$ n1 O. @ 5.3 Pulverised Fuel Firing8 O. u2 ]' P% Y- H6 _0 Q) m
5.3.1 Pulverised Fuel Firing Systems5 O/ z) S4 Y$ Q# l$ U0 b/ }' j# J
5.3.2 Fuel Preparation
, E; g' f" j8 [" m9 Q- b2 Y6 ^ 5.3.3 Burners.& _4 Z5 @( }8 b: M6 m$ o) t7 L
5.3.4 Dry-Bottom Firing; m0 H2 n4 M) ?7 p8 h; |
5.3.5 Slag-Tap Firing; |3 a$ g- B$ T: M* o" d8 b3 z
5.4 Fluidised Bed Firing Systems4 S& z) C3 W( K7 p$ }5 O' s/ C
5.4.1 Bubbling Fluidised Bed Furnaces
2 M! O ^. \9 v 5.4.2 Circulating Fluidised Bed Furnaces; Z5 y% L. \3 R0 E8 H5 i
5.5 Stoker/Grate Firing Systems# [3 F9 @8 j+ t7 D* V& A2 y
5.5.1 Travelling Grate Stoker Firing
8 b; l$ i& B) P, ]. ~ 5.5.2 Self-Raking TypeMoving-Grate Stokers
% d+ o, T1 z& b5 l6 I 5.5.3 Vibrating-Grate Stokers
+ `7 X5 O" n3 j9 D 5.6 Legislation and Emission Limits
4 b$ T6 ?) b( i2 i- ]( N1 B+ N 5.7 Methods for NOx Reduction
1 f8 i# x" r' ]0 C7 [% ] 5.7.1 Combustion Engineering Measures
7 N1 w+ ?0 B9 j, @; q 5.7.2 NOx Reduction Methods, SNCR and SCR (Secondary Measures)
) O+ H( U5 g w, x1 ` 5.7.3 Dissemination and Costs+ R [/ z4 j* x/ M4 x
5.8 SO2-Reduction Methods
0 B% }( ~# E1 W/ p 5.8.1 Methods to Reduce the Sulphur Content of the Fuel3 r2 f8 ^- j/ Y) V% a, w+ o2 x
5.8.2 Methods of Fuel Gas Desulphurisation: y* A( c F" X, z; y4 }
5.8.3 Dissemination and Costs
9 P! T- C" C- W+ K O 5.9 Particulate Control Methods) x. a: [% }- U0 J, i8 m
5.9.1 Mechanical Separators (Inertia Separators)2 u" T, d$ r" M7 Q
5.9.2 Electrostatic Precipitators
: F0 L/ B# ~4 b2 d- c+ ^ 5.9.3 Fabric Filters# W& c2 \2 P. s; o- Z$ x4 [# W
5.9.4 Applications and Costs.
! R2 h# z9 M; _8 S1 x5 G 5.10 Effect of Slag, Ash and Flue Gas on Furnace Walls and Convective Heat Transfer Surfaces (Operational Problems)/ f( l- ^1 ~0 X$ |4 O7 T
5.10.1 Slagging7 z( H2 R0 T" u% {
5.10.2 Fouling.0 U& P* A. U/ E; N" i
5.10.3 Erosion.& a1 i4 W$ ]2 i( r& T8 d5 d
5.10.4 High-Temperature Corrosion.
7 M+ U& o9 v5 s3 j% \# u# | 5.11 Residual Matter* f$ v2 y) @& z0 r
5.11.1 Forming and Quantities& D q4 k! K6 e
5.11.2 Commercial Exploitation0 k: u( X3 s6 P" e6 U
References/ F: m S! V; O8 T
6 Power Generation from Biomass and Waste * i' J5 w8 ~2 G* y) p7 d% `
6.1 Power Production Pathways- D& ]$ u( X0 d8 ?
6.1.1 Techniques Involving Combustion
4 \! o* c6 g6 J F7 y! u4 Z6 F 6.1.2 Techniques Involving Gasification
) Y% q, w+ [6 h2 ^ 6.2 Biomass Combustion Systems" v j2 @6 l4 s! ^5 x1 a n- m
6.2.1 Capacities and Types
, ` R* j1 e/ }6 \5 u 6.2.2 Impact of Load and Forms of Delivery of the Fuel Types! N1 t* d! y& t1 C6 {& Y: K, a+ ~2 c
6.2.3 Furnace Types
% q6 @8 K4 D2 V+ U+ @* U4 ] 6.2.4 Flue Gas Cleaning and Ash Disposal; u& E# e1 T/ ]7 r. p5 X- `8 H
6.2.5 Operational Problems
2 ]/ v p. b% E! g: x/ s* o- C' m 6.3 Biomass Gasification
) w' v# o# M4 h1 I) N& i 6.3.1 Reactor Design Types; J' [" t" J# x: A
6.3.2 Gas Utilisation and Quality Requirements! u6 |4 Q3 N- G" Q; j- n
6.3.3 Gas Cleaning
, y/ B& E2 z/ G1 u/ }. i- P 6.3.4 Power Production Processes
7 D. q8 R1 x1 _- j' c0 ?4 c: c. \ 6.4 Thermal Utilisation of Waste (Energy from Waste). d9 [& s4 [! M" ` s4 y( ^
6.4.1 Historical Development of Energy from Waste Systems (EfW)
0 U6 p, l% h( r- p. U) y6 w$ F1 O, w 6.4.2 Grate-Based Combustion Systems+ b1 [6 F; b3 s( Y. G
6.4.3 Pyrolysis and Gasification Systems- G4 N# p' _- T, g/ o Q5 W" ~2 ^
6.4.4 Refuse-Derived Fuel (RDF).
) o! `* O9 A4 A! z: L 6.4.5 Sewage Sludge
" I, J7 d' g+ W; x/ U! n7 q 6.4.6 Steam Boilers
; s9 C* o$ k e( ] 6.4.7 Efficiency Increases in EfWPlants. J3 v% o/ a# \7 o$ u
6.4.8 Dioxins7 a6 x; B. A) X9 k! ?; V! M- s
6.4.9 Flue Gas Cleaning
; ~, {; M9 R/ X/ z- { 6.5 Co-combustion in Coal-Fired Power Plants, a6 J3 D: `; S) G3 a) e3 ]! |( ~
6.5.1 Co-combustion Design Concepts
; z# K; \/ n' {$ Q3 D. a2 I4 E 6.5.2 Biomass Preparation and Feeding2 ^$ H! N& o- |. ?6 y' U C. h
6.5.3 Co-combustion in Pulverised Fuel Firing
2 u) t! @7 r; ] Q; m& X 6.5.4 Co-combustion in Fluidised Bed Furnaces6 k; i* U7 W5 t% t$ X7 M' z1 F
References
+ G* M; h/ I0 k' h9 N3 T 7 Coal-Fuelled Combined Cycle Power Plants
3 n( T2 f2 V. U5 `: q/ S 7.1 Natural Gas Fuelled Combined Cycle Processes) b' `! R: g) M0 E% i( T
7.2 Overview of Combined Processes with Coal Combustion
% q' `- A/ {! ~9 ~" |+ V; B 7.2.1 Introduction
/ x* O; {; i2 Q# [. }; f& m6 ?6 }5 K 7.2.2 Hot Gas Purity Requirements
2 h' C7 H9 p8 ] m- x8 L 7.2.3 Overview of the Hot Gas Cleaning System for Coal Combustion Combined Cycles- [; H9 s) y" p
7.2.4 Effect of Pressure on Combustion.
. o6 F7 g4 |6 o6 f6 s 7.3 Pressurised Fluidised Bed Combustion (PFBC): y# Z$ }/ b( h9 u, o8 w
7.3.1 Overview! X5 c3 j9 N# @: _! p
7.3.2 Hot Gas Cleaning After the Pressurised Fluidised Bed8 U8 \4 C* `# T
7.3.3 Pressurised Bubbling Fluidised Bed Combustion (PBFBC).
0 W3 R% G$ l2 i, I 7.3.4 Pressurised Circulating Fluidised Bed Combustion (PCFBC).
. r& I Q- z$ F) e- W 7.3.5 Second-Generation Fluidised Bed Firing Systems (Hybrid Process)( N/ l+ G& K# t6 e5 n7 M
7.3.6 Summary
) B6 u7 ?1 }# a+ p5 n# E$ p 7.4 Pressurised Pulverised Coal Combustion (PPCC)) E) Q! A' N: H/ Z
7.4.1 Overview
. y' `5 M1 {; x 7.4.2 Molten Slag Removal% L$ j2 Q' ]2 f, D3 _
7.4.3 Alkali Release and Capture4 c m5 h& j7 M% S0 l3 A
7.4.4 State of Development
) a' t. F: x2 Z( } 7.4.5 Summary and Conclusions' S$ _# U) \4 C! ?5 T4 M7 k
7.5 Externally Fired Gas Turbine Processes
1 ]( G$ b+ a8 o1 h8 d+ m; N 7.5.1 Structure, Configurations, Efficiency, `. h1 L# ~2 m5 h
7.5.2 High-Temperature Heat Exchanger
( p% t& E% I: w* N 7.5.3 State of Development
8 n. a. d0 E7 j s; r' i8 G 7.5.4 Conclusions
3 c1 m6 q/ r e 7.6 Integrated Gasification Combined Cycle (IGCC)- Q5 ]. E; P+ W/ M
7.6.1 History of Coal Gasification
: R# X5 A U. r& r# j0 E5 {- P 7.6.2 Applications of Gasification Technology4 |+ ]7 N% m& s9 E+ e) P% L7 W
7.6.3 Gasification Systems and Chemical Reactions: C) D9 |4 I4 Q/ W- F
7.6.4 Classification of Coal Gasifiers. K6 ?2 t/ {/ r
7.6.5 Gas Treatment
* ]5 {# }7 N) h$ k7 P4 Q. v9 O2 i 7.6.6 Components and Integration6 R+ @- X' Z9 N
7.6.7 State of the Art and Perspectives
$ T8 c* j3 o( k! U0 C& b References
+ x* B8 a% e7 ?+ o( T+ J/ C$ | 8 Carbon Capture and Storage (CCS) 8 c+ e, I" t5 w
8.1 Potential for Carbon Capture and Storage
0 Q( }4 v/ ]; D b8 G1 P4 A 8.2 Properties and Transport of CO2
) v5 ]3 ]& f1 b- Q; _$ P 8.3 CO2 Storage
1 ~; f* {' I9 {. W" L7 t* P; K 8.3.1 Industrial Use
1 e/ H9 I1 A5 b 8.3.2 Geological Storage
7 F% ~, Z- o- I; W. J 8.4 Overview of Capture Technologies, C" d1 v( u/ D( D% i3 j
8.4.1 Technology Overview5 h& C e- a9 F
8.4.2 Separation Technologies
$ |4 Q J) `! U2 ~5 A6 u" ]: D" t 8.5 Post-combustion Technologies- q! L/ ~2 H7 R& S& b3 L
8.5.1 Chemical Absorption. h+ l/ }, y; t7 X
8.5.2 Solid Sorbents9 n5 m6 o' F2 B& J: z; r( a( {# j: W
8.6 Oxy-fuel Combustion9 T9 E4 W& m' L# g* V+ B9 _
8.6.1 Oxy-fuel Steam Generator Concepts* A3 E4 w, [# E7 M
8.6.2 Impact of Oxy-fuel Combustion. ^1 U) ^6 N$ Y! | y$ Y5 Q
8.6.3 Oxy-fuel Configurations: ]- L/ \3 L+ \* e' X# N
8.6.4 Chemical-Looping Combustion- e s% `* _* ^0 j
8.7 Integrated Gasification Combined Cycles with Carbon Capture and Storage
& M' C( c0 E- c* M" H 8.8 Comparison of CCS Technologies9 @# Y" k8 n; M6 S3 y' O n
References
4 \7 A0 A/ J, B Index
评分
查看全部评分
楼主热帖