TA的每日心情 | 慵懒 2017-7-12 08:29 |
---|
签到天数: 7 天 连续签到: 2 天 [LV.3]偶尔看看II 累计签到:7 天 连续签到:2 天
|
楼主 |
发表于 2010-1-21 10:04:56
|
显示全部楼层
Specialized math functions.: f+ @2 x8 m8 ~5 L) E2 P
( C; q; D, w% w1 L7 ?+ \% H besselj - Bessel function of the first kind.
: g9 G' @& O: {, `- M" b5 U( q bessely - Bessel function of the second kind.9 {6 @) O8 _( M7 Q! T
besseli - Modified Bessel function of the first kind.
' g5 R2 k5 i( F besselk - Modified Bessel function of the second kind.
! D( m" |. _( e) S% }* h3 m beta - Beta function.
: H x' L* k- z betainc - Incomplete beta function.! E% r" y( l+ \* |; U
betaln - Logarithm of beta function.; M" C6 N+ H$ g! ]0 K- c6 ]; n
elli石皮解 - Jacobi elliptic functions.
: ]0 X6 J) W7 |: K4 j ellipke - Complete elliptic integral.- S1 \4 J- h. b* F# A5 `
erf - Error function.
- o3 r9 Z/ ?9 F" W3 B erfc - Complementary error function.
& i2 q1 l& {+ I5 \! @' a& I erfcx - Scaled complementary error function.
: |; h/ f6 x) a2 ~. @ erfinv - Inverse error function.& j. k* H$ S4 i: r
expint - Exponential integral function.0 n. k+ e5 J L5 G/ p& W1 F
gamma - Gamma function.. w n2 v7 x. ?+ @
gcd - Greatest common divisor.
. J/ V( ?9 N- ~0 B- ~/ k: ^* F gammainc - Incomplete gamma function.) k* n! t3 @. m1 ~7 w. h
lcm - Least common multiple.* m1 |/ g& W4 ~6 y+ O$ `
legendre - Associated Legendre function.
~4 z6 k# S |8 J gammaln - Logarithm of gamma function. x) U) z! m: S1 E! V' U
log2 - Dissect floating point numbers.
( U' L% q) f+ O7 U" A6 O6 G; c pow2 - Scale floating point numbers.
5 N/ g4 P! ^$ Y1 r9 i- S rat - Rational approximation.$ C& P+ P% c( H0 A9 i3 N& I
rats - Rational output.
, M& p, R* ^6 Q; A% u" Y cart2sph - Transform from Cartesian to spherical coordinates.9 n) `4 G- s, C u: W& i7 M, H
cart2pol - Transform from Cartesian to polar coordinates.
6 A( c- p% n! C7 s. ~3 T pol2cart - Transform from polar to Cartesian coordinates.
z( {$ Q; W& M sph2cart - Transform from spherical to Cartesian coordinates.
) C, n" d- E8 a+ l2 @- |) @: P5 W$ T% @. m' a" }& h" {0 {
; B2 E3 E2 f/ D$ E q% a) B
>> help matfun& ?/ _0 m4 ^8 l1 @5 k( f9 {
1 L! U; [7 M) j& Q. N% S, W
Matrix functions - numerical linear algebra.
/ O) E! ^; E R$ p6 e V6 Q
( B0 g5 u" X. T0 L0 M \) ], i, E5 g Matrix analysis.
6 L1 h3 W4 H; B: O, { cond - Matrix condition number.
1 i2 I% ^& w2 z) a+ I1 Y% ~0 u0 L! g7 V norm - Matrix or vector norm.7 d2 z" G# [& b% ?$ g; Q0 c
rcond - LINPACK reciprocal condition estimator.
0 E# E" F, D3 _ rank - Number of linearly independent rows or columns. b& c3 i- p5 L+ ?0 N: [
det - Determinant.7 u: A/ m4 ? i# O- e2 G& E8 U& Z7 L& O
trace - Sum of diagonal elements.
E- e+ K1 l, Y$ ^/ N" U* p null - Null space.
1 z, T- d6 z3 j F* l* g3 W! ~ orth - Orthogonalization.
- {( Z+ ^: r/ B& b2 J o rref - Reduced row echelon form.
7 @1 B7 `9 w* U8 A b* l, v6 H' X
Linear equations.
8 X, W% a, J% }! i* p6 e \ and / - Linear equation solution; use "help slash".
. ~0 c* ]5 K, k6 t6 s chol - Cholesky factorization.0 a" W. }. ^/ U" e( G
lu - Factors from Gaussian elimination.4 E; _* c1 Z* b4 p2 P$ ?( w, X
inv - Matrix inverse.. U* _. c" H! t9 O
qr - Orthogonal-triangular decomposition.
/ x( Q2 m0 N% l) u: H$ q qrdelete - Delete a column from the QR factorization.6 F V7 ^2 w2 y) ^/ U- e
qrinsert - Insert a column in the QR factorization.
& q o7 o* }. O" M6 { nnls - Non-negative least-squares.8 i6 k) j* r8 r1 Z6 R( N
pinv - Pseudoinverse.# i7 l) g% ~1 m7 |) ~ {6 m. ?! j
lscov - Least squares in the presence of known covariance.* B: d7 L* S$ i5 t9 h$ X8 @% _, [
# w0 v$ r- p4 s. k8 |4 [
Eigenvalues and singular values.1 ^$ {, k1 ] L; G9 B5 |
eig - Eigenvalues and eigenvectors.7 T! E! D% [' T' m
poly - Characteristic polynomial.1 z5 l; t# C0 V7 @7 L `
polyeig - Polynomial eigenvalue problem./ e5 C' O# U: Z8 Z" J
hess - Hessenberg form.5 K% d# ^, M/ U
qz - Generalized eigenvalues./ J1 B8 J9 l1 R, H- P$ h
rsf2csf - Real block diagonal form to complex diagonal form.
X3 L0 @6 w/ }. J cdf2rdf - Complex diagonal form to real block diagonal form., E. B: Y2 r+ f
schur - Schur decomposition./ o& u2 `' D8 g4 A
balance - Diagonal scaling to improve eigenvalue accuracy.5 x5 x( \' b4 e; A" g! l/ H
svd - Singular value decomposition.6 r9 ^% X; q* a: Z, V
* b5 {/ [% H1 |3 S2 M# i
Matrix functions.
- v* |( A' L/ k expm - Matrix exponential.
5 w- h- a) p5 F$ i& K expm1 - M-file implementation of expm.
{& o8 g% M& e5 t+ y' `. B9 w expm2 - Matrix exponential via Taylor series.
, C& U5 K$ X, v' R6 A" N expm3 - Matrix exponential via eigenvalues and eigenvectors.# @/ p! E X c% I- `
logm - Matrix logarithm.) }$ N' C0 Q% l
sqrtm - Matrix square root.
* N: {2 S1 T; Y2 c1 { M funm - Evaluate general matrix function. |
|