TA的每日心情 | 开心 2018-6-9 18:48 |
---|
签到天数: 3 天 连续签到: 1 天 [LV.2]偶尔看看I 累计签到:4 天 连续签到:1 天
|
发表于 2009-11-18 11:36:55
|
显示全部楼层
Name : SatTrafo - General saturable transformer. 3 phase. 2 or 3 windings.
- m; E+ v5 Y" X4 g& _! p Wye, Delta with all phase shifts. Auto, and Zigzag with most common configurations.' t& g1 l* S% H+ \8 _
Card : BRANCH6 ?) A) b+ R' u2 g; U
Data : Io= Current [A] through magnetizing branch (MB) at steady state.( G5 r3 t) Q% T1 r9 a" _+ ^
Fo= Flux [Wb-turn] in MB at steady state.
# |! m* B5 P# y1 t$ y5 M The pair Io, Fo defines the inductance in MB at steady state.
4 Z; [1 G/ z" O Rm= Resistance in magnetizing branch in [ohm]. 5-leg core or 3-leg shell.
/ e. z, [8 w: m: q The magnetizing branch is always connected to the PRIMARY winding and Rm is referred to this voltage.
7 o2 j1 `% L7 i/ b: A {9 F5 A0 q R0= Reluctance of zero-sequence air-return path for flux. 3-leg core-type
! y+ |6 E6 p+ ]* D Vrp= Rated voltage in [V] primary winding (only the voltage ratios matter).' k: A5 B7 v: o# s( i& D& q& {
Rp= Resistance in primary winding in [ohm].
) K2 A: J7 _. C" U Lp= Inductance in primary winding in [mH] if Xopt.=0
7 E0 m$ m$ h. ~; }9 Q Inductance in primary winding in [ohm] if Xopt.=power freq.' o- i: J$ Q8 w i
Vrs= Rated voltage in [V] secodary winding. 3 t& _! v$ b p: j* q, R* U
Rs= Resistance in secondary winding in [ohm].$ l, g. g1 _9 }
Ls= Inductance in secondary winding in [mH] if Xopt.=0
$ d0 G% t6 Q. K, d1 S0 c# F" w; Q Inductance in secondary winding in [ohm] if Xopt.=power freq.
% |# g/ R8 ?# I& A2 R# C @ Vrt= Rated voltage in [V] tertiary winding.
1 j# [& U8 d$ g! {+ I Rt= Resistance in tertiary winding in [ohm].
6 J7 l1 x. U' [7 \5 {" a7 e+ a Lt= Inductance in tertiary winding in [mH] if Xopt.=0
- A" H/ B1 S5 O( y/ P. Q( _ Inductance in tertiary winding in [ohm] if Xopt.=power freq. 9 L# d, P1 p7 {# @( j, `0 S0 Q
RMS= unchecked: Current/Flux characteristic must be entered./ g3 O8 _! L7 B( a- A
checked: Irms/Urms characteristic must be entered.
& l w" p. H/ L% l$ d; m/ r ATPDRAW performs a SATURATION calculation.9 z( Y1 j# S0 ?% S9 u1 L5 X/ q# z
3-leg core = checked: 3-leg core type transformer assumed. TRANSFORMER THREE PHASE7 b2 \3 \7 w9 N6 E# n7 z+ |8 y/ x
unchecked: 5-leg or 3-leg shell type assumed. TRANSFORMER.
9 m$ D6 v- q( b2 ^5 e 3-wind.= turn on tertiary winding. : Z- N) W4 T3 X2 v
Output specified the magnetization branch output (power&energy not supported). : {; j$ U1 g3 I8 }9 t" u; z
Node : P= Primary side. 3-phase node.: w ]. _& Q2 K, e
S= Secondary side. 3-phase node.
* m6 t! W8 ^; U% D" k: a PN= Neutral point primary side.: ^* y+ u ^$ B
SN= Neutral point secondary side.
! X- s9 ~0 v9 J! e4 ` T= Tertiary side. 3-phase node.# v# Y( G. {1 ^: v! b* i$ d
TN= Neutral point tertiary side.
+ k4 J p7 K$ N) F Sat= Internal node, connection of the magnetization circuit with saturation.
! ?) t$ e0 T- ^( o9 C: D% cThe coupling is specified for each winding, with four coupling options: Y, D, A, Z
1 {2 P% P: d. o All phase shifts are supported.
8 I% W* i9 S7 P h1 kSpecial note on Auto-transformers: ) E+ n: k7 T7 o6 V" x* y
The primary and secondary windings must be of coupling A(uto).$ x! X a8 b g
Special note on ZigZag-transformers:
5 E: Z; r- q) m For this type the user can specify a phase shift in the range <-60,0>&<0,60>.
2 P, j w% ]8 B6 z( s0 k0 E# [4 p/ B Note that the values -60, 0 and +60 degrees are illegal (as one of the winding parts degenerates).
' d: ?( z; c; C The phase shift is given relative to a Y-coupled winding.
) w- `) s0 r \( ]# Z0 C If the primary winding is Zigzag-coupled, all other windings will be shifted with it.
* f5 ^ K2 T" s7 i( f+ a$ [9 d P* X2 G If the primary winding is D-coupled, 30 deg. must be added/subtracted to the phase shifts.; g" X) Y; Z+ F1 y& X
For negative phase shifts the phase A winding starts on leg 1 (called z with voltage Uz) 6 q4 r H `7 B/ P" ?/ o7 ?2 Z
and continues in the opposite direction on leg 3 (called y with voltage Uy).' T3 ?, Z0 l$ W% j+ q, e7 c0 u
For negative phase shifts the phase A starts on leg 1
+ A# a0 {: W5 J$ S4 ^) K) p ~ and continues in the opposite direction on leg 2. % m( P. v$ b V- @- _3 |5 r! g
The normal situation is to specify a phase shift of +/- 30 deg. * g% g! A5 \8 o
in which case the two parts of the winding have the same voltage level and leakage impedance.. Y+ o3 r; D- [9 t* ^4 x6 H
In general the ratio between the second part of the winding Uy and the first part Uz is
p: L) O0 r6 Y' E+ @% h3 b n=Uy/Uz=sin(a)/sin(60-a) where a is absolute value of the phase shift.) I1 ]' Y0 C1 n; b! X
This gives:
$ f0 G1 i j" ~3 Q1 |4 @/ G% c Uz=U/(cos(a)+n*cos(60-a)) and Uy=Uz*n4 u. {9 |' G0 t; G) `, C
Lz=L/(1+n*n) and Ly=Lz*n*n, Rz=R/(1+n) and Ry=Rz*n 1 ?5 A1 F9 | G# Z, M: u4 K+ }
where Lz and Ly are the leakage inductance of each part of the winding (L is the total leakage inductance)& r( _7 p* l+ X0 T' M) `
and Rz and Ry are the winding resistance of each winding part (R is the total).
7 L' c' K# [ }* M- y* z; l The parameters Uz, Uy, Zz, and Zy are automatically calculated by ATPDraw based on the 6 e' F$ P9 v5 l7 x1 M
equivalent parameters U and Z and the phase shift, a.
, q1 j+ S- L W2 O( W' p5 d$ ]9 Q
( l- t' [, o" b* Z7 h# l
s3 x3 \0 R2 P( PPoints: It's possible to enter 9 points on the current/flux characteristic.
. Q, A0 [$ D3 S" k5 y, ^ The required menu is performed immedeately after the input menu.
& _! w/ z2 b2 F6 H The points should be entered as increasingly larger values. 7 W n7 u, O/ E' |9 P
The point (0,0) is not permitted (added internally in ATP).
/ F" I6 G) X4 c0 HRuleBook: IV.E.1-2 or 3. |
|