TA的每日心情 | 开心 2018-6-9 18:48 |
---|
签到天数: 3 天 连续签到: 1 天 [LV.2]偶尔看看I 累计签到:4 天 连续签到:1 天
|
发表于 2009-11-18 11:36:55
|
显示全部楼层
Name : SatTrafo - General saturable transformer. 3 phase. 2 or 3 windings.7 `3 E. S% s! ^- p: S
Wye, Delta with all phase shifts. Auto, and Zigzag with most common configurations.
" ?4 N# C5 U/ X7 _: WCard : BRANCH& s# I; }1 |+ z4 o \( {
Data : Io= Current [A] through magnetizing branch (MB) at steady state.' Q3 L- K, f7 J+ q- j8 `. z
Fo= Flux [Wb-turn] in MB at steady state.
* C; D5 Z) `( f" F! v6 N: ]+ n The pair Io, Fo defines the inductance in MB at steady state.( @6 ?+ [ `" P1 M* h7 ]+ T* t W" {
Rm= Resistance in magnetizing branch in [ohm]. 5-leg core or 3-leg shell.
4 T& V3 D z) f0 j% s The magnetizing branch is always connected to the PRIMARY winding and Rm is referred to this voltage.
9 A( ~8 |' O: M R0= Reluctance of zero-sequence air-return path for flux. 3-leg core-type- D4 Z% k2 k8 } G* z
Vrp= Rated voltage in [V] primary winding (only the voltage ratios matter).& K8 v4 K" j( h. `7 C! `4 A% Q
Rp= Resistance in primary winding in [ohm]." F7 w# H& @& N" J
Lp= Inductance in primary winding in [mH] if Xopt.=0) F; t& E3 N) C; ?4 r" s
Inductance in primary winding in [ohm] if Xopt.=power freq.
) |9 ^* I6 \# F! D Vrs= Rated voltage in [V] secodary winding. 8 N& s" q! g' |
Rs= Resistance in secondary winding in [ohm].% B! x* e; @, m& c( x
Ls= Inductance in secondary winding in [mH] if Xopt.=0& ^" {" W$ ~: @- J- F
Inductance in secondary winding in [ohm] if Xopt.=power freq.
) E& x- j* R" c- E2 }) M( ~ Vrt= Rated voltage in [V] tertiary winding.) k- D: a2 _' |
Rt= Resistance in tertiary winding in [ohm].
1 J: {; t6 O1 |% q Lt= Inductance in tertiary winding in [mH] if Xopt.=05 w* q e: f- ?3 y) B" S
Inductance in tertiary winding in [ohm] if Xopt.=power freq. o' Y" v. J1 j* B
RMS= unchecked: Current/Flux characteristic must be entered.. p- m# I4 i' P
checked: Irms/Urms characteristic must be entered.
# t0 R- z/ n ]5 w; D5 Z ATPDRAW performs a SATURATION calculation.
7 w Q' M4 }0 m- h. n& t6 j n 3-leg core = checked: 3-leg core type transformer assumed. TRANSFORMER THREE PHASE9 G7 f2 T2 O" n' Q2 @) P
unchecked: 5-leg or 3-leg shell type assumed. TRANSFORMER.
4 t8 n% X" Y' z" f. Z% P 3-wind.= turn on tertiary winding.
; B& x2 X1 s( vOutput specified the magnetization branch output (power&energy not supported).
- S: E6 \: Q, h T# F9 dNode : P= Primary side. 3-phase node./ O" C1 f5 T% }7 O
S= Secondary side. 3-phase node.) ~ J i$ ^+ y8 d
PN= Neutral point primary side. R l8 [0 i7 v0 t. K8 p
SN= Neutral point secondary side.
$ m. h6 u5 e4 i, g T= Tertiary side. 3-phase node.
0 ?! i) M+ D& Q TN= Neutral point tertiary side.
4 }+ X! H( q' o J Sat= Internal node, connection of the magnetization circuit with saturation.
# P# a7 E& P N I0 K# d1 yThe coupling is specified for each winding, with four coupling options: Y, D, A, Z
0 v w/ P3 P- p: k All phase shifts are supported." i9 A) \5 Q2 [+ E
Special note on Auto-transformers: * Z5 W, s/ M$ d& o: b
The primary and secondary windings must be of coupling A(uto).8 U6 v: b- b1 A J7 m6 U
Special note on ZigZag-transformers: 3 n. E. n$ o6 [
For this type the user can specify a phase shift in the range <-60,0>&<0,60>.
, U4 q1 R5 r/ g2 E7 s Note that the values -60, 0 and +60 degrees are illegal (as one of the winding parts degenerates).
% J" d3 u/ j1 H2 m6 j The phase shift is given relative to a Y-coupled winding.
) B( k/ o/ n0 x. Y, @, i. r If the primary winding is Zigzag-coupled, all other windings will be shifted with it.
% v5 p8 ?* d: g If the primary winding is D-coupled, 30 deg. must be added/subtracted to the phase shifts.
5 v2 u2 T/ B) L, a For negative phase shifts the phase A winding starts on leg 1 (called z with voltage Uz) 1 H$ a. R+ Z5 o) }. k
and continues in the opposite direction on leg 3 (called y with voltage Uy).# R1 e; `. R3 `. T# z% S
For negative phase shifts the phase A starts on leg 1 - B! u4 \) X7 B
and continues in the opposite direction on leg 2.
3 ?/ ]1 U( \4 u9 H5 k: E T5 e The normal situation is to specify a phase shift of +/- 30 deg.
8 L$ @% I1 A3 i% X5 {" N& B8 V in which case the two parts of the winding have the same voltage level and leakage impedance.: i+ l4 g9 u( L" @* g+ P8 H. D
In general the ratio between the second part of the winding Uy and the first part Uz is ; r. l$ a A$ M4 B1 f
n=Uy/Uz=sin(a)/sin(60-a) where a is absolute value of the phase shift.
; O, i' R2 e l& P This gives:4 \) C+ f3 S: s) J
Uz=U/(cos(a)+n*cos(60-a)) and Uy=Uz*n5 u0 R" A& |% I! J* i& d
Lz=L/(1+n*n) and Ly=Lz*n*n, Rz=R/(1+n) and Ry=Rz*n # U4 X n. X! ~. V) ^3 a) C. k
where Lz and Ly are the leakage inductance of each part of the winding (L is the total leakage inductance)" l. _6 p6 E3 F* k& T0 M, \: A7 z& l5 V
and Rz and Ry are the winding resistance of each winding part (R is the total).
8 L# H a# y* {& k% s The parameters Uz, Uy, Zz, and Zy are automatically calculated by ATPDraw based on the 0 u& k: k8 Q, {: i* A7 l' ^: i$ ^- X$ B$ S# \
equivalent parameters U and Z and the phase shift, a.
8 F' @2 \5 U/ x) U4 T0 }. S
9 S z# M( J$ R* E2 m! R4 Y7 }' ~5 ]7 u5 f/ N) ?
Points: It's possible to enter 9 points on the current/flux characteristic.
% W3 T. _ z" l; C The required menu is performed immedeately after the input menu. Q' g v& j% i' s8 J" R+ D2 @
The points should be entered as increasingly larger values. + B8 q0 @6 n/ y$ @8 z, `' Q+ s n
The point (0,0) is not permitted (added internally in ATP).
( N6 ^) R; x2 \! kRuleBook: IV.E.1-2 or 3. |
|