TA的每日心情 | 开心 2020-3-1 21:18 |
---|
签到天数: 1 天 连续签到: 1 天 [LV.1]初来乍到 累计签到:2 天 连续签到:1 天
|
楼主 |
发表于 2014-6-10 16:45:26
|
显示全部楼层
第三版目录。3 y, e3 k% [& N: q5 g
1 Introduction 1
( F& j5 \8 I& a" y, t1.1 Purpose of the Course / 1
! n6 q# X0 }/ ^ h; j1.2 Course Scope / 2
5 z. B: |) ]7 n2 x& I1.3 Economic Importance / 2
& Z4 c7 o. @7 H& R1.4 Deregulation: Vertical to Horizontal / 3/ H. O, S$ d# b3 E& l1 I+ u( h
1.5 Problems: New and Old / 3& N( V; o; H5 L
1.6 Characteristics of Steam Units / 6
; {. L' V3 W( P0 I3 v2 A7 ~; Z) P1.6.1 Variations in Steam Unit Characteristics / 106 n' P. Y9 r( [7 f" C! ?
1.6.2 Combined Cycle Units / 13" N9 [7 t Z; G# X: K
1.6.3 Cogeneration Plants / 146 J0 f( G% _6 I/ L M; g/ i
1.6.4 Light-Water Moderated Nuclear Reactor Units / 17( v& m: J. C$ m7 k/ E2 d
1.6.5 Hydroelectric Units / 18! U1 {, l; G. D9 s! o( R
1.6.6 Energy Storage / 21
) d+ `' |5 `" G I( Z1.7 Renewable Energy / 229 R3 \0 ]7 S, B9 j. O% ~; k
1.7.1 Wind Power / 23
7 g1 S1 g, x, b* R& T# U1.7.2 Cut-In Speed / 23% u+ @/ b' Y. i9 _5 K" D
1.7.3 Rated Output Power and Rated Output Wind Speed / 24
6 Y2 k0 w& M* K2 N" S1.7.4 Cut-Out Speed / 24
' r* p. u. H& S: H( [+ ]0 }0 ?1.7.5 Wind Turbine Efficiency or Power Coefficient / 247 O1 n& m, ?2 {3 T- H) q
1.7.6 Solar Power / 25 W* H$ Q1 U. R7 p; S; B+ K( G
APPENDIX 1A Typical Generation Data / 26) V* c. r9 A3 T0 H/ O
APPENDIX 1B Fossil Fuel Prices / 280 R ^7 _' A" z4 H5 ]3 F
APPENDIX 1C Unit Statistics / 29$ Y! O0 T3 K8 T5 F2 n7 N- Q" ~
CONTENTS
' F+ q" T8 h* oviii contents
. E* k8 |6 l( M$ H& qReferences for Generation Systems / 31
- j% W; g$ l- a/ VFurther Reading / 31
: b0 j6 K. J& C& R) f$ o1 w* [3 B2 Industrial Organization, Managerial Economics, and Finance 35
% ^$ @2 i) F" l( b6 P' P$ s2.1 Introduction / 35
1 l# B) U- ~+ H3 F2.2 Business Environments / 36
; I& c8 i! w: Q. t2 Y$ Q- ^# g: b3 E2.2.1 Regulated Environment / 37
# z2 Q O# N" ^+ O/ M2.2.2 Competitive Market Environment / 38
6 ~( G+ `% L- N/ o. c. _3 U2.3 Theory of the Firm / 40
) T. i+ q- @( v4 n8 O1 G1 F2.4 Competitive Market Solutions / 42
! Y$ P7 ~7 Q6 k* V2.5 Supplier Solutions / 45
4 V& c3 N4 O" w+ ?$ i2.5.1 Supplier Costs / 468 a& c4 b, O$ ~ s* Z5 o( n; `4 x
2.5.2 Individual Supplier Curves / 46& o6 i9 g! Q8 E; E8 Y$ I. { i
2.5.3 Competitive Environments / 47
5 O& R$ l$ Q: i1 ^* y5 r' \2.5.4 Imperfect Competition / 51
+ H/ U; l6 E0 J% I! Q/ X5 x$ E2.5.5 Other Factors / 52. d2 j1 z7 J/ U& C' }* E. s' f
2.6 Cost of Electric Energy Production / 53
3 B- E+ Y" `- n$ Q L7 b" X4 [# w2.7 Evolving Markets / 54! d2 z; H+ w' b2 u1 [0 h% u3 \; D
2.7.1 Energy Flow Diagram / 57
K0 V6 h' k3 A* w$ z" d' x2.8 Multiple Company Environments / 58
8 q4 [$ [+ S$ h5 G2.8.1 Leontief Model: Input–Output Economics / 58
! ]& ~4 D" K E; F+ z2.8.2 Scarce Fuel Resources / 608 a8 Q" X9 I; t, I& d
2.9 Uncertainty and Reliability / 61) \0 A; F$ M0 n9 n ~
PROBLEMS / 61
* Y/ e; c, q8 u7 WReference / 62
! _+ U) X2 [ G7 |3 Economic Dispatch of Thermal Units and Methods of Solution 63
& r. v9 t Z# Q2 O3.1 The Economic Dispatch Problem / 631 [$ O3 j$ g: l: ^& @
3.2 Economic Dispatch with Piecewise Linear Cost Functions / 68
8 C3 Q% d! A% [- t3.3 LP Method / 69* {( V% d- O* H1 ~( o% C7 \& R
3.3.1 Piecewise Linear Cost Functions / 69
. K. Z! _' F# m& E3 v, d2 u3.3.2 Economic Dispatch with LP / 71( `6 \! L ~1 r
3.4 The Lambda Iteration Method / 73& ]6 L! D7 E) J! E
3.5 Economic Dispatch Via Binary Search / 76# d/ x1 y( H) }% R R
3.6 Economic Dispatch Using Dynamic Programming / 78( E. _4 h0 M, V" f
3.7 Composite Generation Production Cost Function / 81
5 @" ^: @7 v% f* u9 H8 Z3.8 Base Point and Participation Factors / 85
1 g7 ?! h/ L. j3.9 Thermal System Dispatching with Network Losses1 U. L& b& c" `$ {' M
Considered / 88
" x9 k( ^; e9 Lcontents ix& n* P/ c! u5 t$ t
3.10 The Concept of Locational Marginal Price (LMP) / 92% X" Q6 U$ {" M6 |: O5 N
3.11 Auction Mechanisms / 95
$ F+ x) u4 @ X) p: o" Z, G$ t3 V0 w3.11.1 PJM Incremental Price Auction as a/ f/ ~/ O+ m6 R& O; p7 I/ i
Graphical Solution / 95
$ U5 [$ v, H3 N3 v, \; x3.11.2 Auction Theory Introduction / 98' e3 }, \' u! d& R0 i1 F n9 O
3.11.3 Auction Mechanisms / 100
( ]3 j6 ]: l: }9 H {, m X3.11.4 English (First-Price Open-Cry = Ascending) / 1017 z5 B/ n' u7 z6 g
3.11.5 Dutch (Descending) / 103, c, i2 m- k6 l1 ~1 r8 o
3.11.6 First-Price Sealed Bid / 1048 }% \/ D/ ~! k1 }/ d: r
3.11.7 Vickrey (Second-Price Sealed Bid) / 105
* N& k/ c7 p2 |* p4 S0 `3.11.8 All Pay (e.g., Lobbying Activity) / 105
. u1 N3 h$ l) O, g- [APPENDIX 3A Optimization Within Constraints / 106
" [* t1 b7 N. u) p. aAPPENDIX 3B Linear Programming (LP) / 117, e) J3 P; Z! K6 ~7 I' n6 @
APPENDIX 3C Non-Linear Programming / 1287 B% B$ N, i. ^- Q, h
APPENDIX 3D Dynamic Programming (DP) / 128" b* X V0 z6 n( b
APPENDIX 3E Convex Optimization / 135
2 R! z4 T& R% x5 W7 yPROBLEMS / 1380 j: o1 t# }: {0 n1 t t
References / 1464 a: D1 e. K3 R# _1 ^; T
4 Unit Commitment 1476 w" D- n+ d0 C
4.1 Introduction / 147, n) F3 l3 c% n% u
4.1.1 Economic Dispatch versus Unit Commitment / 147 S. c# I- J# L. d
4.1.2 Constraints in Unit Commitment / 152
7 W7 W9 k* R/ ^4 t4.1.3 Spinning Reserve / 152& J @% q, T0 X) c, z7 l
4.1.4 Thermal Unit Constraints / 153
$ [2 {8 {' G- ~4.1.5 Other Constraints / 1552 X& k* e7 C6 _) N) P
4.2 Unit Commitment Solution Methods / 155* s* p( R5 F. K4 a" H! q. E
4.2.1 Priority-List Methods / 156
- E5 y( a4 Y- z# \- Y b1 `4.2.2 Lagrange Relaxation Solution / 157- U9 q' `6 ?4 S
4.2.3 Mixed Integer Linear Programming / 166& @3 k% w z2 U+ m& f# h' @
4.3 Security-Constrained Unit Commitment (SCUC) / 167( y9 Z1 ^# {% |" V9 W
4.4 Daily Auctions Using a Unit Commitment / 167$ ^2 Y5 j3 @- n% K$ I. [- {1 @
APPENDIX 4A Dual Optimization on a Nonconvex8 T$ |! P+ e! R
Problem / 1673 c$ ? }4 D. `1 j9 y/ `* F
APPENDIX 4B Dynamic-Programming Solution to
9 ^2 S1 j+ D5 @3 U$ |Unit Commitment / 173
8 L8 N3 u3 o7 h! A4B.1 Introduction / 173
3 z9 i4 R8 d$ L; p7 D% v4B.2 Forward DP Approach / 174
$ q: ~8 J9 _$ d/ g. vPROBLEMS / 182
1 [# e" g0 R7 \/ }8 O! u2 xx contents0 E! f3 O5 N, D6 e
5 Generation with Limited Energy Supply 187( c7 }+ n: a2 \) v7 J
5.1 Introduction / 187
/ V, ^, W6 {9 c1 {# d8 a1 F5.2 Fuel Scheduling / 188
1 ^4 x7 } ?4 s/ R' F5.3 Take-or-Pay Fuel Supply Contract / 1886 F& K9 ^, n& j& ?. M8 `& L$ }/ F
5.4 Complex Take-or-Pay Fuel Supply Models / 194
) \$ Y G$ Y5 g5 l5 {5.4.1 Hard Limits and Slack Variables / 194
- w, W! \) f: w5.5 Fuel Scheduling by Linear Programming / 195
: y: ~( u3 `3 s* J5.6 Introduction to Hydrothermal Coordination / 202
9 [) ?2 ^9 D) O0 Y' A5.6.1 Long-Range Hydro-Scheduling / 203
- }6 h' ]7 Y" N, Q% p9 z0 s9 e U5.6.2 Short-Range Hydro-Scheduling / 204, }) F$ O0 Q- U5 T# m
5.7 Hydroelectric Plant Models / 204
3 p$ R) c9 i. @' w- q5.8 Scheduling Problems / 2075 n' y: Y/ h3 Q, G8 [9 H
5.8.1 Types of Scheduling Problems / 207
I: G% m, E m9 ^5.8.2 Scheduling Energy / 207
2 g" W. A# i3 _7 l* L! m5.9 The Hydrothermal Scheduling Problem / 211
, o8 y. n" ?2 L* L- M% U5.9.1 Hydro-Scheduling with Storage Limitations / 211& @) `& }. [7 A
5.9.2 Hydro-Units in Series (Hydraulically Coupled) / 216
- h* i+ P/ h( W% o+ K5.9.3 Pumped-Storage Hydroplants / 218
- c0 Y$ @0 k. Z5.10 Hydro-Scheduling using Linear Programming / 222
6 e* C# g7 x- l& H" {APPENDIX 5A Dynamic-Programming Solution to hydrothermal7 F$ T' {7 f" N6 C9 [
Scheduling / 225
; r- v. @& q% Y1 t, l+ v& e5.A.1 Dynamic Programming Example / 227 p2 ^# g& F" t& m
5.A.1.1 Procedure / 228
8 `- ^$ o8 v- A# a, i+ n# O$ Y( P# Y! ^5.A.1.2 Extension to Other Cases / 231' p3 y: \- I* u. o* A
5.A.1.3 Dynamic-Programming Solution to Multiple Hydroplant
3 I2 y* p% s7 {7 o0 ^Problem / 232& h* }/ ]: \* I" p( o
PROBLEMS / 2344 m4 _+ v5 j8 ~6 l7 X
6 Transmission System Effects 243
8 v3 }4 |5 |) @9 A6.1 Introduction / 243* S, W/ L8 @; I" o1 X( U* S _
6.2 Conversion of Equipment Data to Bus and Branch Data / 247" R3 A1 @- X% F: D0 Z; D% c2 @
6.3 Substation Bus Processing / 2480 [$ Q" {! I* Q
6.4 Equipment Modeling / 248
5 N- @) G6 o( E$ E6.5 Dispatcher Power Flow for Operational Planning / 251
% @- y( \) d8 `4 g; U- W6.6 Conservation of Energy (Tellegen’s Theorem) / 252; m+ E3 a5 j3 O) B- Y/ O' ]
6.7 Existing Power Flow Techniques / 2536 s o \3 q& ?, h+ d% K
6.8 The Newton–Raphson Method Using the Augmented2 q+ {# I8 F1 R. y, Y5 ~
Jacobian Matrix / 254- n0 ?' c- J; A8 x, s4 I
6.8.1 Power Flow Statement / 254
; P- [( G+ _/ z2 U: c) C) G3 @6.9 Mathematical Overview / 257. v% F$ Q4 L" [9 [- I1 p- O0 c
contents xi
" k2 P: o) i0 P6.10 AC System Control Modeling / 2599 r: K9 z$ K* n6 h
6.11 Local Voltage Control / 259
4 ]" Z8 t- F; ~' V3 ]6.12 Modeling of Transmission Lines and Transformers / 2599 X8 H, {$ U1 ]* x9 C/ J }
6.12.1 Transmission Line Flow Equations / 259. [2 `6 j3 e$ \' [4 |
6.12.2 Transformer Flow Equations / 260- {; T; o8 T1 G* ~
6.13 HVDC links / 261
% h4 C, S# P! G3 z7 h# m& W6.13.1 Modeling of HVDC Converters/ B+ o3 L+ h- f( X- j! l* s
and FACT Devices / 264" ?% L" g! e& V
6.13.2 Definition of Angular Relationships in
8 l% ]" j% w1 N6 ?7 z3 r: mHVDC Converters / 264
+ W2 T, O" B3 E, _6.13.3 Power Equations for a Six-Pole HVDC" y2 E2 C0 h$ m) `+ T
Converter / 2644 Z1 ?4 l2 ?' [# r+ | k8 Y
6.14 Brief Review of Jacobian Matrix Processing / 2679 D% {& q. w3 A, k) |: p( L
6.15 Example 6A: AC Power Flow Case / 269
" y. v) c) q/ @" Q* }- ~6.16 The Decoupled Power Flow / 271& c) n' K( w7 e/ x" u
6.17 The Gauss–Seidel Method / 2754 U1 C/ F. p6 ?( t9 ]$ W4 g! S
6.18 The “DC” or Linear Power Flow / 277' ~" `" R/ ~: ?6 J, w
6.18.1 DC Power Flow Calculation / 277
: r L6 ]. N7 `0 e* R1 w4 a6.18.2 Example 6B: DC Power Flow Example on the9 J8 J' @4 _' K- d
Six-Bus Sample System / 278+ \+ F0 W( }, ?6 v9 e% }. k g
6.19 Unified Eliminated Variable Hvdc Method / 278' r* c, `1 ~& D5 `
6.19.1 Changes to Jacobian Matrix Reduced / 279
1 K/ `# Y, A# w! }, P) N/ q# Z6.19.2 Control Modes / 280: @3 c1 l# e: w) A9 j: e o: i' C) _2 M
6.19.3 Analytical Elimination / 280
8 H# j& Z- f8 |) _; M6.19.4 Control Mode Switching / 2833 M. }9 D( j' k! g2 q
6.19.5 Bipolar and 12-Pulse Converters / 283- e% D/ N) _6 r, u5 I' S" G6 X/ S
6.20 Transmission Losses / 284
Y+ O3 Z' P# z9 M0 Z L* }# G6.20.1 A Two-Generator System Example / 284
$ e, ^+ b6 z4 j; R% j+ n( Q! j/ W6.20.2 Coordination Equations, Incremental Losses,
* N- X2 C% C$ F: U g! c& Xand Penalty Factors / 286% q$ `2 o" l! j: ]1 _ w- }
6.21 Discussion of Reference Bus Penalty Factors / 288+ C% J5 O. `0 i* a' @4 q$ c$ U" r
6.22 Bus Penalty Factors Direct from the AC Power Flow / 289
0 W* c7 M; P! q2 i* \! lPROBLEMS / 291
' `% {3 z# i1 @+ [! A0 g/ f0 [7 Power System Security 296
' r0 T) }& F+ u& O6 X0 u7.1 Introduction / 296+ L, y0 D( @% n1 e0 g5 V! b
7.2 Factors Affecting Power System Security / 301* c+ n/ Z+ Y" X2 q. \9 o2 O/ d
7.3 Contingency Analysis: Detection of Network Problems / 3019 Q" l, h! ?( |- e: G
7.3.1 Generation Outages / 301
0 {, @' A/ `6 ]5 E7.3.2 Transmission Outages / 302
. [; O3 M7 u7 K+ Q# I/ l, Lxii contents
5 ~! }& y( y# e d& C+ ~; G7.4 An Overview of Security Analysis / 306
; U9 ]" O6 J" c$ q) ^7.4.1 Linear Sensitivity Factors / 3077 p! e8 U# F1 @0 c7 e
7.5 Monitoring Power Transactions Using “Flowgates” / 313; T% O w5 z" h
7.6 Voltage Collapse / 315# `7 ^4 \* n7 K8 \4 h
7.6.1 AC Power Flow Methods / 317
9 u( j6 I3 z+ b& R. Y& F% W+ L7.6.2 Contingency Selection / 320
2 `% ]2 _# v) H' t# [/ J) m7.6.3 Concentric Relaxation / 323
' y+ Q7 M+ F9 @ Y6 Q9 ?& @3 q. N7.6.4 Bounding / 3254 e4 V# }# w% z# j( x
7.6.5 Adaptive Localization / 325
$ G! h3 p9 P$ R4 P7 `8 b. VAPPENDIX 7A AC Power Flow Sample Cases / 327
$ ?* \9 a# K0 e7 l, `# c' l; rAPPENDIX 7B Calculation of Network Sensitivity Factors / 3362 d1 l& @# D0 g4 C0 w8 H! e
7B.1 Calculation of PTDF Factors / 336
: j+ w/ }3 \4 P# L7B.2 Calculation of LODF Factors / 339
9 Q/ c! T! [2 B1 Q8 \7B.2.1 Special Cases / 341
9 L* l! n1 L* G: d7 E7B.3 Compensated PTDF Factors / 343
7 I: v5 Q: B; y: r+ VProblems / 343
7 S0 b% R/ `# t& q* D- iReferences / 349
5 U/ o$ Z5 o0 g8 Optimal Power Flow 350# _6 I# G) K% d& Z& I6 D
8.1 Introduction / 350
8 G C8 L* `$ d9 k; N' S" |8 F& R* B8.2 The Economic Dispatch Formulation / 351
2 d* f4 U' `# L- P9 T% S, f8.3 The Optimal Power Flow Calculation Combining1 h X& |6 o3 I) @5 Y6 I- z, ~) n7 @/ e8 ]
Economic Dispatch and the Power Flow / 352" L- |2 e& q/ N% U9 O) N
8.4 Optimal Power Flow Using the DC Power Flow / 354
0 G! e% c* W0 c M; U* N% U# o8.5 Example 8A: Solution of the DC Power Flow OPF / 356) r( h2 d. ?1 X8 E2 P; U0 q
8.6 Example 8B: DCOPF with Transmission Line
9 l5 s8 }2 q* S4 U; H; CLimit Imposed / 361
; A' y7 L7 Y* `8 I9 J. n7 c1 i7 ~8.7 Formal Solution of the DCOPF / 3651 F$ D. V+ L3 Q. y4 f" R
8.8 Adding Line Flow Constraints to the Linear" p9 u0 h- ^+ i: w
Programming Solution / 365. w' o+ o5 ^0 G: `2 T3 f" C" |
8.8.1 Solving the DCOPF Using Quadratic Programming / 367
6 {1 N8 }" _4 r& g P2 o! F3 C, W8.9 Solution of the ACOPF / 368+ z/ h0 h2 f3 c" ^
8.10 Algorithms for Solution of the ACOPF / 369' W; c0 `- A& b6 N
8.11 Relationship Between LMP, Incremental Losses,
- E5 w6 N: C# p$ C1 Land Line Flow Constraints / 376
3 _: d) s% l/ l- N* u/ v9 N1 r8.11.1 Locational Marginal Price at a Bus with No Lines+ D8 c9 i/ A: t! [# t) I
Being Held at Limit / 377
2 O$ ~" J0 X( Q9 \5 Y, ^8.11.2 Locational Marginal Price with a Line Held at its Limit / 378' U. i1 J" c }+ E
contents xiii0 @! }6 P/ _: Y6 M2 w
8.12 Security-Constrained OPF / 382 H+ [6 |/ C# x- ]3 ?% C2 Q
8.12.1 Security Constrained OPF Using the DC Power Flow
J# z& U5 }6 X5 Y# G; O; `and Quadratic Programming / 384/ N/ A8 a( ?5 N+ x4 R& W( t
8.12.2 DC Power Flow / 385( r5 X* `7 q5 H0 f
8.12.3 Line Flow Limits / 385
& C8 C% `% c1 @7 R$ \- U8.12.4 Contingency Limits / 3868 S7 {* W" P& _. [( u1 C. ~
APPENDIX 8A Interior Point Method / 391
& o2 x: g% p! j! {APPENDIX 8B Data for the 12-Bus System / 393 ?% g6 L- R" u6 p
APPENDIX 8C Line Flow Sensitivity Factors / 395: _6 `. I- \/ n6 Q1 }: ~
APPENDIX 8D Linear Sensitivity Analysis of the
8 ]3 [9 V. T; }1 LAC Power Flow / 397
6 F* s5 b3 M. y0 w# vPROBLEMS / 399
+ R7 ~6 d, B0 Q" c$ ~, K9 Introduction to State Estimation in Power Systems 403
1 e$ G1 p& n# w0 \6 G3 K3 K9.1 Introduction / 403
% s4 N) W; e! c/ p1 K9.2 Power System State Estimation / 404) J+ l. v: N( z# P. R9 D
9.3 Maximum Likelihood Weighted Least-Squares& M- K( i8 ^. m! |
Estimation / 408
^1 X% j; }, J9 E, b' i9.3.1 Introduction / 408
. ]) k- V3 V! z7 K9 Q. M9.3.2 Maximum Likelihood Concepts / 410; S4 C5 k& n. ^0 `( R& c
9.3.3 Matrix Formulation / 414
9 O/ V) V0 j% C6 ]/ i9.3.4 An Example of Weighted Least-Squares7 Z) R# N5 {7 ]2 h8 |$ a8 U7 W
State Estimation / 417( L( ~7 b5 C3 {. m0 ?7 {
9.4 State Estimation of an Ac Network / 421
* \* d+ d6 g7 z2 X" V9.4.1 Development of Method / 421
. e( R$ ?6 J7 `9.4.2 Typical Results of State Estimation on an
& O. ]% J( _ o" z$ `2 p0 ^/ g) TAC Network / 424+ R8 w) c4 u8 g; Z
9.5 State Estimation by Orthogonal Decomposition / 428
: w9 K) w9 J7 E/ N: C9.5.1 The Orthogonal Decomposition Algorithm / 431
y. I6 ?1 N/ ]/ s. _9.6 An Introduction to Advanced Topics in State Estimation / 435
! J3 x; g4 r: k: S3 @, ?) F2 T9.6.1 Sources of Error in State Estimation / 435
1 ~6 {$ }9 B" y: f4 e1 J9.6.2 Detection and Identification of Bad Measurements / 436
! h/ `3 C( c3 T& }) X' V9.6.3 Estimation of Quantities Not Being Measured / 443& O/ C, t2 c3 w$ u7 _8 e9 ?& x7 x
9.6.4 Network Observability and Pseudo-measurements / 444
1 M" i# Q" Q1 Q2 l) }" ~9.7 The Use of Phasor Measurement Units (PMUS) / 447' F8 n+ D7 s* }# J8 ]; c1 d2 E
9.8 Application of Power Systems State Estimation / 451
. M- T8 a2 M, b; r/ l, \& F% h9.9 Importance of Data Verification and Validation / 454: ?" b) T# ]+ v! Z2 q" D
9.10 Power System Control Centers / 454
# E7 d$ E% r* S0 Uxiv contents
1 e" ^& i( Y. L# y2 W4 T7 bAPPENDIX 9A Derivation of Least-Squares Equations / 4563 _. r0 ?% O6 G: r" m
9A.1 The Overdetermined Case (Nm > Ns) / 457
7 S) n. l$ s6 Y( ~1 ]/ v9A.2 The Fully Determined Case (Nm = Ns) / 462
~: G& d+ i1 l! C' |6 a9 {9A.3 The Underdetermined Case (Nm < Ns) / 462
: ~- D- O9 G0 E* GPROBLEMS / 464
Q, N0 t8 A0 D& o10 Control of Generation 468
. b+ e* ]& L R# N, Y% u! X10.1 Introduction / 468* T; L8 d1 v3 V" {/ k
10.2 Generator Model / 470
, X8 n* b3 b: d) S+ N10.3 Load Model / 473# r1 B4 O7 M% T( Y" C2 h$ Z
10.4 Prime-Mover Model / 475
: i. c6 n9 g: x% r6 |. ]" B10.5 Governor Model / 4764 ] z L! ?0 ~( b
10.6 Tie-Line Model / 481
% l6 i7 {$ x( L( e' g% K3 e1 |10.7 Generation Control / 485
?+ S" m" z8 l1 R10.7.1 Supplementary Control Action / 485
0 R& z" u( Z0 o* W& k( t! e7 O10.7.2 Tie-Line Control / 486
+ b/ E& a' B$ G10.7.3 Generation Allocation / 489
4 L+ n$ I/ o1 b# f; B, B, ^$ B10.7.4 Automatic Generation Control (AGC)7 H3 R/ z; |# O G; Q: U Y
Implementation / 491
$ Y3 U4 Y- G! o" N- {# |10.7.5 AGC Features / 495* M" `+ o6 b# P2 n- E' j0 D
10.7.6 NERC Generation Control Criteria / 496% h! w8 ~- [- [( K6 B z! m
PROBLEMS / 497/ p2 x& A0 @! C* \
References / 500
y/ ]1 l; i* @: ?. Z5 |$ I* p. F11 Interchange, Pooling, Brokers, and Auctions 501
. ^: ~* e3 B4 V! M# I11.1 Introduction / 501
2 `) V8 G$ |; \! B11.2 Interchange Contracts / 504' ~# M9 `3 ^- f* J. O. X9 R) T
11.2.1 Energy / 504
2 J: \7 E$ _# R/ N11.2.2 Dynamic Energy / 506
) H& A( V& `/ C' Q+ J$ O11.2.3 Contingent / 506. ^' Y; ], N7 |- p9 {/ x! [
11.2.4 Market Based / 507
( m; C6 R. [/ h3 q% z11.2.5 Transmission Use / 508
. K( {* h6 N0 c8 j11.2.6 Reliability / 517
1 f, m) W- W6 u( g. l11.3 Energy Interchange between Utilities / 517
4 y1 n$ K9 z- |+ M3 r11.4 Interutility Economy Energy Evaluation / 521/ e1 k4 t9 ` k# ] ~5 ]8 V/ D2 N k0 T
11.5 Interchange Evaluation with Unit Commitment / 522
1 w0 r- z5 L6 r: N' x) p, v/ z5 `11.6 Multiple Utility Interchange Transactions—Wheeling / 523
0 ?! t" N% r- v0 L- Y11.7 Power Pools / 5262 K+ C: P1 Q/ o+ y7 u. d
contents xv
! J6 {6 t: R2 w+ ]: [11.8 The Energy-Broker System / 529! m1 f3 s$ g, Z9 H0 D6 u
11.9 Transmission Capability General Issues / 533
! B! G4 N2 r7 j& _11.10 Available Transfer Capability and Flowgates / 5358 E/ U L, s( E! ?
11.10.1 Definitions / 536
8 _/ s2 Y1 x- w* c- k# C11.10.2 Process / 539
# J6 |. V5 `0 W) D11.10.3 Calculation ATC Methodology / 540) R. x: X; [4 ]- X9 O; y
11.11 Security Constrained Unit Commitment (SCUC) / 550" i* k' F; P5 w' X5 Z( q
11.11.1 Loads and Generation in a Spot Market Auction / 550
2 x+ }: H& E2 c. R# [11.11.2 Shape of the Two Functions / 552' f4 R" `3 W* l# d, n
11.11.3 Meaning of the Lagrange Multipliers / 553$ N5 f8 H- H5 u, L
11.11.4 The Day-Ahead Market Dispatch / 554
* q. }8 x( u7 l9 ?9 [11.12 Auction Emulation using Network LP / 555
" z% ?$ n+ S+ G3 h11.13 Sealed Bid Discrete Auctions / 555+ v4 y2 J! b# W# v R- p! [
PROBLEMS / 560! D! I& G; z! G% G
12 Short-Term Demand Forecasting 566
* |$ O. E% t% _. Q12.1 Perspective / 566
: w9 c1 w2 F6 ~/ e; v3 v$ W! j12.2 Analytic Methods / 569
y1 d8 z* S! @. c12.3 Demand Models / 571
6 H+ n& C$ m9 D) f7 w! w- M12.4 Commodity Price Forecasting / 5727 p0 u1 w9 i1 j+ l u4 w
12.5 Forecasting Errors / 573- O9 c4 P) o5 U( H6 d
12.6 System Identification / 573
' s2 _1 H% B, u! x8 U, k R12.7 Econometric Models / 5741 x5 m* {% c( o/ r3 [2 ^/ c- Y8 S$ E
12.7.1 Linear Environmental Model / 574* j. p( P3 g8 f; x9 r
12.7.2 Weather-Sensitive Models / 576
4 U& m3 C/ Y3 {, \6 l12.8 Time Series / 578
9 T/ p1 s8 W6 p12.8.1 Time Series Models Seasonal Component / 578
7 o4 [ s$ W/ W6 _% a/ C1 K* d+ O12.8.2 Auto-Regressive (AR) / 580, z. J1 ]/ i2 F3 ~
12.8.3 Moving Average (MA) / 581; y$ R" t+ C* p% \/ y- ^
12.8.4 Auto-Regressive Moving Average (ARMA):
/ I! ] |+ f' F" L' PBox-Jenkins / 582
+ M' ]( ?6 V; U4 o5 v3 V12.8.5 Auto-Regressive Integrated Moving-Average( v* e8 C+ e' k' {2 Q
(ARIMA): Box-Jenkins / 584
3 ?" X9 X$ C2 `12.8.6 Others (ARMAX, ARIMAX, SARMAX, NARMA) / 585, P( T& ]+ R0 o/ z
12.9 Time Series Model Development / 585; p* C" D" j% T9 B, M" O( X, E5 e
12.9.1 Base Demand Models / 586
: @$ T. ^; T! {$ M3 F$ W; P12.9.2 Trend Models / 586
. ^/ o% z" S! o3 g12.9.3 Linear Regression Method / 586/ \1 a1 U0 `5 [5 Y% {( L- k; c
xvi contents- p& \4 v$ U# k2 W: {; Y' P
12.9.4 Seasonal Models / 588) i: p4 P \( s# W' i( d7 X* { f/ V: I+ k
12.9.5 Stationarity / 588
$ ?2 _, l/ f; ~) J0 T12.9.6 WLS Estimation Process / 590
/ h$ ~! }3 i( b* [12.9.7 Order and Variance Estimation / 5919 E3 l. Q: h# b' J
12.9.8 Yule-Walker Equations / 592/ I" A% {" T g( w Q* v- `. y
12.9.9 Durbin-Levinson Algorithm / 5957 Y' a, x. b( t3 m! S% c& ?) v$ I
12.9.10 Innovations Estimation for MA and ARMA# E* E5 C3 {8 E! h$ n* Z
Processes / 598. w: T# @/ B; Z( P# U
12.9.11 ARIMA Overall Process / 600
7 B! o, ~; S2 Q4 V: ^( @12.10 Artificial Neural Networks / 603
$ H" E* f7 B7 J/ g* K6 p12.10.1 Introduction to Artificial Neural Networks / 6041 E | E' X6 L/ `* ^# u, L' `
12.10.2 Artificial Neurons / 6055 b* Y/ |+ k8 s e& Z4 i0 v
12.10.3 Neural network applications / 606
. v5 i) L L0 n% V' F7 ^) S12.10.4 Hopfield Neural Networks / 606$ S5 A7 d O" F' S2 l
12.10.5 Feed-Forward Networks / 607
1 H( N3 @; Z* G1 [# q12.10.6 Back-Propagation Algorithm / 610& [( F+ g, l1 d
12.10.7 Interior Point Linear Programming Algorithms / 613
: u4 O) B8 s1 l( x( h# F8 u" r5 a12.11 Model Integration / 6148 _' p" l e0 M
12.12 Demand Prediction / 614) ?6 A) ~ O0 x4 K4 |8 ^, z9 B
12.12.1 Hourly System Demand Forecasts / 615
# E$ j1 `0 M8 a0 w( ~- v12.12.2 One-Step Ahead Forecasts / 615+ R- @: v/ }0 S1 y8 d5 L* [% x
12.12.3 Hourly Bus Demand Forecasts / 6168 N0 y" \: G E8 a4 N
12.13 Conclusion / 616
6 C% S5 O3 q8 Q+ p {PROBLEMS / 617 |
|