回复 2# redplum 5 j3 \' x/ E0 p5 Y2 b. H4 J
- g% ^* E( F; e! k) T; d7 E E7 a0 w1 @0 I3 ~
首先谢谢指教
' R8 D+ \5 R# }7 L+ H- H/ x# C/ e下面是这个程序,指教一下那里需要修改啊clear; clc; errArr=[]; %% %³õʼ»¯£¡£¡£¡ initial; % Start clock t1 = clock; %% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));%³õʼ¶ÔżÒò×ÓÓë³Í·£Òò×Ó¼ÆËã% ik=0;%¼Æµü´ú´ÎÊý£¡£¡£¡ %µü´úÑ »·¹ý³Ì£¡£¡ while(abs(ROU)>=err)
1 P* `6 y4 ^) U1 Y0 a%%
& I1 d- B7 V* C, W
%Calcute h,g matrix ROU=sl'*MU_MIN+su'*MU_MAX; errArr=[errArr;ROU;]; SIGMA=0; MU=SIGMA*ROU/(2*length(sl)); %ÖÐÐIJÎÊýÖÃÁã% 0 }* z. l2 A9 V* a, O3 h# T1 Z
for i=1:30 temp=0;
c) u6 B( R) d1 [7 h8 ofor j=1:30
temp=temp-V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); ) C" m3 m: A; J
end
9 F$ F% v6 ~* U3 c mif (i>6)
tPg=0; ( b1 L4 D( a' }/ z" F x) P
else tPg=Pg(i); 4 m" y0 } i7 m2 e! C& i4 x# y& f
end h(i)=tPg-Pd(i)+V(i)*temp;
! G: a, R6 O& ~ x. T+ ^end
/ Y( L$ G/ e# ^% z0 G0 |for i=1:30
temp=0; % h4 Z: I1 N" _6 {, M, h
for j=1:30 temp=temp-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); % M; C5 `. j# m h& {
end
& B/ ?/ k0 V8 {2 Q5 o& b4 ]/ e0 X- d" {if (i>6)
tQg=0;
/ r+ E' S7 Z9 K- R3 c: \else
tQg=Qg(i);
9 ?5 a( J# i H Eend
h(i+30)=tQg-Qd(i)+V(i)*temp; # N# x/ X% c7 e; |. s$ ?
end. P, d! A" \6 f" o
% Cal h END
0 A% c* D7 D1 J1 j/ K
% p* {( @; }: t+ B, nfor i=1:6
g(i)=Pg(i); g(i+6)=Qg(i);
1 j7 r. w! _& x9 _% i' u1 Hend
/ _4 C; {- M- V/ q
for i=1:30 g(i+12)=V(i);
2 R9 E1 r, b* [; Zend
a$ i+ j# H) C" |% Cal g END
1 m1 ^. ]. M6 M7 A+ r%Calcute h,g matrix END
; _+ `5 X' b6 O6 U4 D$ d C7 o%%
" c& r* y3 q3 D. b' ^/ r
%Calculate Jacobian&Hessian matix 7 f# e# }( G: K' h: n
%First Step: Jf,Hf
) E8 n, h/ X# g* dfor i=1:6
Jf(i)=2*gencost(i,5)*Pg(i)+gencost(i,6); Hf(i,i)=2*gencost(i,6);
% @) d6 J* o: d1 Jend
# G4 w! Y1 N* x {, I
%Second Step: Jh, hΪµÈʽԼÊø - N2 O# S4 t" }* p4 I3 F
for i=1:6 %Ç°6ÐжÔPgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö Jh(i,i)=1;
4 D' _% ?5 g! J' K0 R. Uend
9 G9 u. o* J5 p8 C$ Y5 ffor i=7:12 %7-12ÐжÔQgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i+24)=1; + t/ Y/ q- `4 g' N( w9 h
end 5 o( Z+ R- C, ^/ K
for i=1:30 %ÐγÉ13-42ÐеÄ1-60ÁÐ
, U. z- G# A' Nfor j=1:30
tempVp=0; tempVq=0; ( e7 r; K! q3 [6 N/ ^
if (j==i) ( l- C% U7 t1 c
for k=1:30 tempVp=tempVp-V(k)*aY(j,k)*cos(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-V(k)*aY(j,k)*sin(Vth(j)-Vth(k)-Yth(j,k)); 9 }9 s5 W* w# l& T( K
end Jh(12+j,i)=tempVp-aY(j,j)*V(j)*cos(Yth(j,j)); Jh(12+j,30+i)=tempVq+aY(j,j)*V(j)*sin(Yth(j,j));
2 y. K' L* j `9 u) e+ m9 b felse
Jh(12+j,i)=-aY(i,j)*V(i)*cos(Vth(i)-Vth(j)-Yth(i,j)); Jh(12+j,30+i)=-aY(i,j)*V(i)*sin(Vth(i)-Vth(j)-Yth(i,j));
" J$ i% T, t9 o/ i( c# iend
( f% h: b5 h8 ]7 W, i
end ! E" X& s# x" |% Y3 Y2 q
end
8 K$ V v ]3 J0 O+ E$ |! dfor i=1:30 %ÐγÉ43-72ÐеÄ1-60ÁÐ
9 ?- I& D* k r. U1 Q5 n
for j=1:30 tempVp=0; tempVq=0;
8 u( C% N+ @6 t0 Vif (j==i)
5 H T1 I2 V8 J% ?7 |3 z
for k=1:30 tempVp=tempVp+aY(j,k)*V(k)*sin(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-aY(j,k)*V(k)*cos(Vth(j)-Vth(k)-Yth(j,k));
6 v6 \& Y! G, q& G* _end
tempVp=tempVp-V(j)*aY(j,j)*sin(-Yth(j,j)); tempVq=tempVq+V(j)*aY(j,j)*cos(-Yth(j,j)); Jh(42+j,i)=V(i)*tempVp; Jh(42+j,30+i)=V(i)*tempVq; 0 @9 M( @! {- w. }
else Jh(42+j,i)=-aY(i,j)*V(i)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); Jh(42+j,30+i)=aY(i,j)*V(i)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); " w2 A* D5 `) H" A' i0 A
end 5 ?/ \1 @# Y2 W8 o
end
b- w: r; q' J0 Wend
% G% k% z3 H: H
%Third Step: Hh
; B* g, H0 {7 v; l; V, y%Óй¦²¿·Ö
9 R6 i4 \" i* k4 zfor i=1:30
, @5 w8 Q: b7 f+ I! Wfor j=1:30
- C! ~) {- t% r0 `' qfor k=j:30
5 ?8 Q$ _' V, z' L, x% R/ P* K
if (j==k&&i~=j) Hh(j+12,k+12,i)=0; %VV Hh(j+42,k+42,i)=V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %%thth + ]- n* `& f+ Y, G9 i- s9 G
elseif (j==k&&i==j) Hh(j+12,k+12,i)=-2*aY(j,j)*cos(Yth(i,i)); %VV temp=0; %thth
! j; c7 }6 S* s8 s& C: |for l=1:30
temp=temp+aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); 5 a" t/ [3 z2 _7 ?, l
end temp=temp-aY(i,i)*V(i)*cos(-Yth(i,i)); Hh(j+42,k+42,i)=V(i)*temp; E6 w& p0 o2 l s: d6 I
elseif (k==i) Hh(j+12,k+12,i)=-aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i); 2 X& R8 @- Q; T' b2 r7 H
elseif (j==i) Hh(j+12,k+12,i)=-aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,k)*V(k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
' M A2 @- i/ m7 ?, _end
Z( a r) M3 C( D: p7 Mend
' o) V# K' q/ K/ h; o; j7 ^8 V
end ! R+ s7 B8 S" F
end
! m- s& i" \: Y5 V0 o$ F%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
, w* w b! x" U7 {7 ~ bfor i=1:30
9 H+ V3 [ P( O. K h' N# \
for j=1:30
7 ?* B% L! w: Ofor k=1:30
: r9 {6 c/ c) e+ I) S- f2 A8 ^if (j==k&&i~=j)
Hh(j+42,k+12,i)=-V(i)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV
/ {" u4 P! G" aelseif (j==k&&i==j)
temp=0; %thV
* z* @! Q: v/ u5 ^) Yfor l=1:30
temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l));
4 J& t; f9 s% |5 C7 uend
Hh(j+42,k+12,i)=temp-V(i)*aY(i,i)*sin(-Yth(i,i)); $ E% `( o2 j0 Y( {+ R: j9 S
elseif (j==i) Hh(j+42,k+12,i)=V(i)*aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thV
: O5 A6 h/ A" A% ?' Nelseif (k==i)
Hh(j+42,k+12,i)=-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV 3 P7 X& [8 j% [& r
end ) K# ?) Q- a0 ~1 s; L& M* O) w
end ; J7 k2 v! ` j! R. I: Y3 B
end Hh(13:42,43:72,i)=Hh(43:72,13:42,i)';
' U1 `$ [! O6 z1 y! ] }end2 Q, F; t8 B( h" M* E) d+ W1 z
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
0 T e7 _ e& c, j- F5 b( U
%ÎÞ¹¦²¿·Ö ' Z; v; C# {) x
for i=1:30 4 @6 O3 ~" {! [, _
for j=1:30
?& ?1 H3 {" a/ V6 O0 ~% Mfor k=j:30
& R2 q, C- j+ S4 D5 Yif (j==k&&i~=j)
Hh(j+12,k+12,i+30)=0; %VV Hh(j+42,k+42,i+30)=V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %%thth
5 l" C0 @) q0 Celseif (j==k&&i==j)
Hh(j+12,k+12,i+30)=2*aY(j,j)*sin(Yth(i,i)); %VV temp=0; %thth / n7 h1 r; Q# _7 I G1 }" P
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); V: e# x1 J2 f
end temp=temp-aY(i,i)*V(i)*sin(-Yth(i,i)); Hh(j+42,k+42,i+30)=V(i)*temp; 9 _" _8 ~! V% @: s# F& n
elseif (k==i) Hh(j+12,k+12,i+30)=-aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30);
; {0 t- a0 A' b' q8 oelseif (j==i)
Hh(j+12,k+12,i+30)=-aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i+30)=-V(i)*aY(i,k)*V(k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30);
! b" ^3 [ j5 e. p0 _! _+ x O' Oend
. R/ I3 Z" p9 Y$ x. ^! R
end
; |& l# I# c$ \5 [6 b* R M+ Zend
4 e/ J3 a( m. R$ R! ~; }
end
" F) I$ R- a/ c) d5 e) g%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£© * a2 t) G ~ u/ |( j4 o! f1 e# |
for i=1:30 / d( b/ R* ^% t# ]2 E
for j=1:30 ' j5 t7 L# B5 z
for k=1:30
2 T8 K$ O. Z' fif (j==k&&i~=j)
Hh(j+42,k+12,i+30)=V(i)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV
/ _9 t( V& Y" I2 eelseif (j==k&&i==j)
temp=0; %thV 9 v- r e5 P9 [# l7 \& D
for l=1:30 temp=temp-aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); + O. B1 O: ~4 B1 l! ?3 n! k1 |, G
end Hh(j+42,k+12,i+30)=temp+V(i)*aY(i,i)*cos(-Yth(i,i)); / m( ]3 E( z2 q* m2 \8 |
elseif (j==i) Hh(j+42,k+12,i+30)=-V(i)*aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thV , H3 s# Y# E: G
elseif (k==i) Hh(j+42,k+12,i+30)=V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV 4 `1 Z9 \! K& ~
end
7 g d5 ^2 X( Y$ M) ^6 o) Iend
- k- b* U& l- D8 e( T* E, n
end Hh(13:42,43:72,i+30)=Hh(43:72,13:42,i+30)'; 8 s/ v" S& b' a. v. y d' Z2 P
end) j, X/ i" @& t0 ]2 c& L
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£© ; ~- c% U7 }, R$ t3 J3 @: Y* T
%HhÐγÉÍê±Ï % B7 r% G8 z9 _ r. b
%Fourth Step: Jg, Hg Jg=eye(42,42); Jg=[Jg;zeros(30,42)]; Hg=zeros(72); ' C/ y( p$ Z% P( D* B
%Calculation Jacobian&Hessian matrix END # O' o& P( _. _* g! J! n
%% / p. H* [8 {) E' d2 t
%Calculate Newton Iteration Îó²îµü´úÁ¿ 9 m7 \8 [8 G, f5 _3 V2 H) M$ Q
%Cal LX0-------------------------1 LX0=Jf-Jh*Lam+Jg*(-MU_MIN+MU_MAX); # k) D- V( a5 e. @& M$ r
%Cal LLam-------------------------2 LLam0=h; pferr=max(LLam0); 3 p* v0 a# S5 }: b! K: S
%Cal LMU_MIN-------------------------3 LMU_MIN0=g-sl-gmin; , g* s. p% _ E* n
%Cal LMU_MAX-------------------------4 LMU_MAX0=g+su-gmax;
4 w6 w1 b6 r9 u9 [%Cal Lsl-------------------------5
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MU*ones(length(sl),1);
( ?( P* A! J# l# I6 y# b5 q%CAl Lsu-------------------------6
Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MU*ones(length(su),1); 8 G7 |& R8 Z# ?" R' L
%Calculate Newton Iteration Îó²îµü´úÁ¿ END!!! 0 q( \: I# C( C: m
%% " V7 z+ \. Z' z; `
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿
2 l7 R6 x' q+ b" A9 ]( R4 {/ W \! g6 X%1st Step: ·ÂÉäÐÞÕýÁ¿delXaf,·ÂÉäÐÞÕýÁ¿delLamaf
& r4 o; s1 P' x$ A' A%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã , a4 S6 i$ g8 O/ [0 |- M
for i=1:60 temp=temp+Lam(i)*Hh(:,:,i); . R: G6 r7 g- F3 w O" z2 ~
end tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; 6 }5 f; S7 z( S1 v6 w# @
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); 9 v. n6 f- [- A1 K! [
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; $ b9 w, H% @( S$ r) m% C7 q8 ?
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
( j, |7 G; h' y, u4 pend
H=Hf-temp+tempgMUg1+tempgMUg2; ) F5 F6 o5 v2 z+ N
%S2:·ÂÉäKESAaf tempgMUg1=0; tempgMUg1=diag(MU_MIN)*sl+diag(MU_MIN)*LMU_MIN0;
/ Z$ ~' d8 C+ Pfor i=1:42
tempgMUg1(i)=tempgMUg1(i)/sl(i); $ [4 @9 `& O% M/ D
end tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=diag(MU_MAX)*su-diag(MU_MAX)*LMU_MAX0; , H% S- m6 H; b2 i$ k
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i); ) n3 @' s4 s" o
end tempgMUg2=Jg*tempgMUg2; KESAaf=LX0+tempgMUg1-tempgMUg2;
$ I+ Y7 ~# [; f' ]/ w8 T%S3:JACOBIAN
JACOBIAN=[H -Jh;Jh' zeros(60)]; ; P7 s/ s! _# K1 F+ T" F2 _# R
%S4£ºRESULT RESULT=-[KESAaf;LLam0];
! ?0 K: {9 N- O. S' g( H& N%S5:Cal ·ÂÉäÐÞÕýÁ¿delXaf,·ÅÉäÐÞÕýÁ¿delLamaf
delXaf=-Jh'\LLam0; delLamaf=Jh\(H*delXaf+KESAaf); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end ; q& f! x5 H# ^2 T' g: M7 D. t
! Q( X; t5 {5 a% @! X' H$ x! u
%2nd Step: ·ÅÉäËɳڱäÁ¿ÐÞÕýÁ¿delslaf, delsuaf
! p5 h! ~% ]4 ]8 x9 D2 K%S1: delslaf
delslaf=Jg'*delXaf+LMU_MIN0; ! p! e7 [) L) U& `, B3 ^6 P/ f+ X2 d
%S2: delsuaf delsuaf=-Jg'*delXaf-LMU_MAX0; . H6 E. `9 N* r2 E( G i9 Q8 n
& q- \0 \& L6 z- F) n# C* x%3rd Step: ·ÅÉäÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MINaf,delMU_MAXaf
5 I8 {5 y0 U* X- ^%S1: delMU_MINaf
temp=0; temp=-Lsl0-diag(MU_MIN)*delslaf;
: N3 {* Z( H! D& B4 Vfor i=1:42
temp(i)=temp(i)/sl(i); 2 V# A) e5 c, ]
end temp(13)=0; delMU_MINaf=temp; 4 K: k3 C( S' C. d# F& V
%S2: delMU_MAXaf temp=0; temp=-Lsu0-diag(MU_MAX)*delsuaf;
! d8 t: l" x* t [. D9 n5 hfor i=1:42
temp(i)=temp(i)/su(i); * n9 r7 [. T, N& _/ \& L
end temp(13)=0; delMU_MAXaf=temp; : p# E u1 \, c% M2 w
0 v& U" ?# ^3 g* k%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ END!!!!!!!!!!!!!!
8 r& h. Q- { @
. Y1 R, ^% e3 {# \1 q6 Q& Z7 \
%% : o. [9 D& q) }! y9 S2 J
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPpaf£¬ STEPdaf
4 k' @) @* C6 K: [; c) C%S1: STEPpaf
. ^+ [* ]7 K( v, Mfor i=1:42
+ t% F+ E( ^: a6 I* cif (delslaf(i)~=0)
temp1=-sl(i)/delslaf(i);
: W. i) a& K1 @ W( ~8 I) selse
temp1=Inf;
# B! J5 {$ m; r) o# eend
- l7 x6 A& `( s$ A7 B# \# Lif (delsuaf(i)~=0)
temp2=-su(i)/delsuaf(i); , T% G' h" \# `
else temp2=Inf; 5 w m2 n4 d& ?" Y% H
end ' W0 ~/ u. L5 t. c3 l; `, {" D
if temp1<temp2 min=temp1; - ^8 ?$ k5 t* ~
else min=temp2; 7 O$ P1 x, ]- N8 c. Y
end ) R& U2 U _0 B* m; o% W
if min>1 min=1;
# O" ^! @. }" D1 P3 A8 d2 Zend
. E1 ]2 _- l' I: S" N
end STEPpaf=0.9995*min;
4 s" {& V* g2 T \5 g2 W; D; ~. A6 P/ ^+ [%S2: STEPdaf
, l2 k( I- o, Y; R' v* ^6 b# B: |9 {
for i=1:42 temp1=-MU_MIN(i)/delMU_MINaf(i); temp2=-MU_MAX(i)/delMU_MAXaf(i);
- E& b( j5 ^, Nif temp1<temp2
min=temp1; 0 i' m( ]# `( R3 h) L" Y' l: E
else min=temp2;
; _3 T& x" ~/ ~0 B6 {$ B8 }end
! D5 _* ~. _: M5 e" Sif (i==13)
min=0;
7 s( Y/ [1 A& ]! R. w( Wend
% l$ H& A9 r4 I: ~1 `6 `if min>1
min=1; 9 f1 z7 h3 J6 y
end
b8 y% ]; ^& {1 T' }. Gend
STEPdaf=0.9995*min; 7 T N5 U5 r3 c, `" i. K/ |1 o8 i
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd END!!!!! - j: {; E, f+ h% f! l2 n
/ t+ d$ g, S: x%¼ÆËã·ÂÉä¶ÔżÒòÊý¼°³Í·£Òò×Ó%
ROUaf=(sl+STEPpaf*delslaf)'*(MU_MIN+STEPdaf*delMU_MINaf)+(su+STEPpaf*delsuaf)'*(MU_MAX+STEPdaf*delMU_MAXaf);
0 H& ^) S( l$ x8 B- c" jif (ROUaf/ROU)^2<0.2
SIGMA=(ROUaf/ROU)^2; 5 S( m3 D V, G& D
else SIGMA=0.2; . _( l! k4 P& a. y
end MUaf=SIGMA*ROUaf/(2*length(sl));
0 |0 U+ w( s8 Q$ b! S# Q%¼ÆËãÍê±Ï%
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MUaf*ones(length(sl),1)-diag(delslaf)*delMU_MINaf; Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MUaf*ones(length(su),1)-diag(delsuaf)*delMU_MAXaf;
$ L' f" u' t; i0 T3 r" z/ e3 R%Calculate Newton Iteration ÐÞÕýÁ¿
4 F: N: D5 w* i1 Z( X2 O( N* r
%1st Step: УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam 2 ]" \# b4 v. c' J
%S1:H temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã : X4 z. b! w j" W' y* [- M
for i=1:60 temp=temp+Lam(i)*Hh(:,:,i);
3 O: @: I }- ~. M1 Lend
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; . g+ _/ Y: I) D% k9 I
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); 9 N* I* }! P. g
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg';
1 w+ A D4 R, h- M/ ^' Ifor i=1:42
tempgMUg2(i,:)=tempgMUg2(i,:)/su(i); # ?1 Z- T3 u+ }2 X3 z2 @
end H=Hf-temp+tempgMUg1+tempgMUg2;
# N/ t: [9 F w: a. |%S2:УÕýKESA
tempgMUg1=0; tempgMUg1=Lsl0+diag(MU_MIN)*LMU_MIN0+diag(delslaf)*delMU_MINaf;
' g# g1 Z+ e0 n7 jfor i=1:42
tempgMUg1(i)=tempgMUg1(i)/sl(i);
$ ^/ R6 }8 o0 ?1 Q% N. bend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=Lsu0-diag(MU_MAX)*LMU_MAX0+diag(delsuaf)*delMU_MAXaf; ( H& q# k" U z9 l
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i);
$ {$ i0 _) O1 F* b! I; d# nend
tempgMUg2=Jg*tempgMUg2; KESA=LX0+tempgMUg1-tempgMUg2; ; `8 ]5 h. u* e4 ^* j
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)];
; U0 Q, Z. D1 i( Y1 E%S4£ºRESULT
RESULT=-[KESA;LLam0]; ; K' ^3 k+ K( g- r( C
%S5:Cal УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam delX=-Jh'\LLam0; delLam=Jh\(H*delX+KESA); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end ) W& t `; Z* r7 u
6 N8 Y4 z! k, e& w! P8 o& {/ c
%2nd Step: УÕýËɳڱäÁ¿ÐÞÕýÁ¿delsl, delsu
, y* B( {, j1 n: K%S1: delsl
delsl=Jg'*delX+LMU_MIN0;
0 C( R* y' j0 U- X%S2: delsu
delsu=-Jg'*delX-LMU_MAX0;
5 k1 N7 l5 M8 X
" B8 B- L( n3 }% j8 D; w( U1 I
%3rd Step: УÕýÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MIN,delMU_MAX " s$ B, \) b6 y7 I& N; j
%S1: delMU_MIN temp=0; temp=-diag(MU_MIN)*sl+MUt*ones(42,1)-diag(delMU_MINaf)*delslaf-diag(MU_MIN)*delslaf;
2 ^" e7 V0 Y% o% B4 K6 _* @4 ~for i=1:42
temp(i)=temp(i)/sl(i); 2 y! W7 C1 l- V$ i, i) E
end temp(13)=0; delMU_MIN=temp;
$ q4 W+ }4 G/ z%S2: delMU_MAX
temp=0; temp=-diag(MU_MAX)*su+MUt*ones(42,1)-diag(delMU_MAXaf)*delsuaf-diag(MU_MAX)*delsuaf;
3 x/ w8 P$ W8 `' w2 d- i& Z0 o9 lfor i=1:42
temp(i)=temp(i)/su(i); ' O4 P+ i2 i; b! v
end temp(13)=0; delMU_MAX=temp; 4 c3 S5 }9 I' {1 E
6 G6 D% k ~- z( `3 E2 h+ \. E/ O
%Calculate Newton Iteration ÐÞÕýÁ¿ END!!!!!!!!!!!!!!
7 b! D* S' n" e. \) H9 g" A& {, u%%
4 z$ b+ }" G2 l9 T7 Z
%¼ÆËãУÕýÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd ! i$ t0 L' v0 p$ \/ I0 M9 r
%S1: STEPp
9 \6 g. |( @, q: m$ pfor i=1:42
. q# ^2 U6 O0 D( {( xif (delslaf(i)~=0)
temp1=-sl(i)/delsl(i); % t3 D. D( i7 d- ?4 h1 r1 N# _6 P
else temp1=Inf;
* M2 ~* R9 M' P( Y+ R# T- z. jend
+ V/ I. g5 t+ I3 K3 S1 v Sif (delsuaf(i)~=0)
temp2=-su(i)/delsu(i); + e6 p( _; J! ]* W
else temp2=Inf;
. H2 L; ^* N9 bend
' K7 U) l" I3 n& `5 Wif temp1<temp2
min=temp1; ( \; `2 b6 s4 V1 f
else min=temp2;
4 ~4 G _) t8 V$ ]) P7 k( c' Gend
5 |% o& l/ N. D! jif min>1
min=1; ; R" H* j( l* r- ]
end
2 ~7 v% c: H, U3 Z9 s% k1 ^end
STEPp=0.9995*min;
! s/ {0 O. _" `; n$ Z! @* V%S2: STEPd
o" N, \1 q% p& Q& E, E2 T6 o5 X- b8 Vfor i=1:42
temp1=-MU_MIN(i)/delMU_MIN(i); temp2=-MU_MAX(i)/delMU_MAX(i); " [" y" p1 B s% r& F R
if temp1<temp2 min=temp1;
) v- b, v& p( F, p: ^0 I" Helse
min=temp2;
8 o+ l3 D! K6 O9 @6 p: ?' A5 Tend
. b1 I& ]4 ?5 u% Y" E* B s- Oif (i==13)
min=0; + ?# B+ \, S7 |% l, Z
end + k+ |+ a3 E U- ^
if min>1 min=1;
! M- e# q7 l0 |% Wend
3 Q/ H! q8 O/ B O9 [end
STEPd=0.9995*min; K3 v1 H8 ^( \
%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ X=X+STEPp*delX; Lam=Lam+STEPd*delLam; sl=sl+STEPp*delsl; su=su+STEPp*delsu; MU_MIN=MU_MIN+STEPd*delMU_MIN; MU_MAX=MU_MAX+STEPd*delMU_MAX; Pg=X(1:6);Qg=X(7:12);V=X(13:42);Vth=X(43:72);
P. J" S' O+ m* h- z%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ END!!!
( j4 @; H- ]( t' f9 R9 `8 ^8 ?
' W# r: b0 d/ O8 X/ c
%¼ÆËã¶Ôż¼ä϶% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl)); 2 H& C7 I p1 j7 S* b
%% # P+ ]- s, c( {" U* `/ h
%ÅжÏÊÇ·ñ³¬¹ýµü´ú´ÎÊý ik=ik+1;
8 e0 }6 _6 x# D- n h2 D _if ik>IterNumMAX
disp('IterNum ERROR!!!!!');
1 w. j: @, \; N% E/ K; c) q5 e4 a9 Qbreak;
7 S4 _: a" f0 c5 S! p, A9 zend
3 {; N' w, Z# z9 G3 h
end et = etime(clock, t1); %% %Êä³ö²¿·Ö / X2 b+ Z; Q! I0 v7 y7 i
if (ik<=IterNumMAX) 4 [: {3 p$ p" u8 y5 S; n( N3 [
%% 4 ], l! I4 F, b1 s
%ÇóµÃ×î´ó×îСµÈʽÎó²î F=0; for i=1:6 F=F+gencost(i,5)*(X(i)*baseMVA)^2+gencost(i,6)*X(i)*baseMVA; end
) j/ z: x. S* P) h( E# Q
max=-10;min=10; for i=1:ik temp=LLam0(i);
/ ^1 q% }8 g. ~6 f* uif (temp>max) max=temp;
6 h! n l( F$ U5 Q5 ]" O4 u' ?end
7 _; m- f q1 D5 X+ lif (temp<min) min=temp;
9 `' i+ _) @. Z2 x3 {; B/ Fend
end max ik %% %Êä³ö½á¹û fprintf('\nConverged in %.2f seconds', et); fprintf('\nObjective Function Value = %.2f $/hr', F); fprintf('\n================================================================================'); fprintf('\n| Bus Data |'); fprintf('\n================================================================================'); fprintf('\n Bus Voltage Generation Load '); fprintf(' Lambda($/MVA-hr)'); fprintf('\n # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)'); fprintf(' P Q '); fprintf('\n----- ------- -------- -------- -------- -------- --------'); fprintf(' ------- -------'); 3 L, i4 w5 E: @
for i = 1:30 fprintf('\n%5d%7.3f%9.3f', i,X(i+12),X(i+42)*180/pi); ; J/ i" I2 H5 @3 a+ B J5 Y
if (i<=6) fprintf('%10.2f%10.2f', X(i)*baseMVA, X(i+6)*baseMVA); ! _- D- x; b4 t4 O
else fprintf(' - - ');
8 N" |, Y: U/ @ d; r, E9 x( T3 _. E9 rend
fprintf('%10.2f %9.2f', bus(i, 3) , bus(i, 4) ); fprintf('%9.3f %9.3f', Lam(i),Lam(i+30));
; E B5 M4 b' l0 o. g4 E/ Dif (i==30)
fprintf('\n -------- -------- -------- --------'); fprintf('\n Total: %9.2f %9.2f',(X(1)+X(2)+X(3)+X(4)+X(5)+X(6))*baseMVA,(X(7)+X(8)+X(9)+X(10)+X(11)+X(12))*baseMVA) fprintf('\n'); ( A1 f+ L2 o* r% k; i; i6 k/ x
end
3 H5 t3 D; {5 q0 H. iend
, u& Z! ~% s, c8 Y
%% %%Êä³öÇúÏßÄâºÏmain iterNum=[1:ik]'; %axis([0,ik+1,min,max]); hold on; f = fit(iterNum,errArr,'spline'); f=feval(f,iterNum); plot(iterNum,errArr,'o',iterNum,f,'-'); end |