回复 2# redplum & H" F, d2 a5 m% E5 V& x
8 M% h* `+ R/ I6 W2 o8 \
3 S$ L1 j6 d! n
首先谢谢指教+ K' @! F F% A' H
下面是这个程序,指教一下那里需要修改啊clear; clc; errArr=[]; %% %³õʼ»¯£¡£¡£¡ initial; % Start clock t1 = clock; %% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));%³õʼ¶ÔżÒò×ÓÓë³Í·£Òò×Ó¼ÆËã% ik=0;%¼Æµü´ú´ÎÊý£¡£¡£¡ %µü´úÑ »·¹ý³Ì£¡£¡ while(abs(ROU)>=err) 9 b0 b# |/ d6 x: @4 t' q
%% 1 T2 @3 u4 L4 W/ t2 Y
%Calcute h,g matrix ROU=sl'*MU_MIN+su'*MU_MAX; errArr=[errArr;ROU;]; SIGMA=0; MU=SIGMA*ROU/(2*length(sl)); %ÖÐÐIJÎÊýÖÃÁã%
( }. c* H! N: _! B5 m1 e k. J2 _! qfor i=1:30
temp=0; ; V+ ]5 {9 Y7 A& W& c
for j=1:30 temp=temp-V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); 6 t ^3 \# o4 b& d* L$ b
end 0 E% f7 P2 [% \. w
if (i>6) tPg=0; - d& T( h u6 c: k. s! o
else tPg=Pg(i);
7 s! t& n) e9 J7 p6 Gend
h(i)=tPg-Pd(i)+V(i)*temp; $ ^( ]: T5 ?5 m
end : u# F$ L4 }/ {! b/ P
for i=1:30 temp=0; ; Q0 S- E5 [* r- I' e( W
for j=1:30 temp=temp-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j));
4 b+ r( z$ h' C4 L0 D+ c/ f+ Yend
0 [6 f+ F$ d9 ~4 P- v. Nif (i>6)
tQg=0;
, n5 N+ m; P! I: ~% uelse
tQg=Qg(i); * J4 }6 P5 u2 u4 |& ^' L* s5 T
end h(i+30)=tQg-Qd(i)+V(i)*temp; 4 j8 a: ]5 Y/ N0 r% \6 ^4 v
end3 I( p/ {3 n& T& q
% Cal h END & S) g& Z; x# N" o8 I0 I% c; g/ e
/ `7 P/ y' L* S* Ufor i=1:6
g(i)=Pg(i); g(i+6)=Qg(i);
! d1 m7 p* L+ l( Z( uend
$ M4 n$ e" D% p# ~for i=1:30
g(i+12)=V(i);
" o" p* A0 b6 T, u u' G8 qend
( |. P$ o* u/ p' ?9 {/ m$ M% Cal g END
u3 {6 i' d& J# R7 f( J
%Calcute h,g matrix END 7 q" u' L$ \ N/ G
%%
) P+ i1 j6 c; t: ?: J% X" \ L1 T%Calculate Jacobian&Hessian matix
$ a3 P! N% R4 o/ n/ b1 H%First Step: Jf,Hf
7 @5 P0 S q, Q* ?+ v" h( r
for i=1:6 Jf(i)=2*gencost(i,5)*Pg(i)+gencost(i,6); Hf(i,i)=2*gencost(i,6); $ f8 R- p7 B6 f% y# l6 H
end + v( K! Z2 ?2 F- @6 _: a
%Second Step: Jh, hΪµÈÊ½Ô¼Êø 1 g$ b3 H* I% A9 x* E
for i=1:6 %ǰ6ÐжÔPgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö Jh(i,i)=1; 6 }' V& n E# r6 r
end
( s: S! t- d( S; i5 c4 q! M$ Y8 Mfor i=7:12 %7-12ÐжÔQgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i+24)=1;
: e' w: t/ _2 r0 ?# w! I2 z. |end
# z w3 m5 e- M% ^6 Y( v
for i=1:30 %ÐγÉ13-42ÐеÄ1-60ÁÐ / |0 P) I( f5 c5 M
for j=1:30 tempVp=0; tempVq=0;
- J) j4 P9 I% N) M& Uif (j==i)
- O1 o( ?0 n. K1 k$ n2 Q
for k=1:30 tempVp=tempVp-V(k)*aY(j,k)*cos(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-V(k)*aY(j,k)*sin(Vth(j)-Vth(k)-Yth(j,k));
/ @7 m3 p L0 V Jend
Jh(12+j,i)=tempVp-aY(j,j)*V(j)*cos(Yth(j,j)); Jh(12+j,30+i)=tempVq+aY(j,j)*V(j)*sin(Yth(j,j));
5 e/ \6 }" D+ o* I4 a! G; Belse
Jh(12+j,i)=-aY(i,j)*V(i)*cos(Vth(i)-Vth(j)-Yth(i,j)); Jh(12+j,30+i)=-aY(i,j)*V(i)*sin(Vth(i)-Vth(j)-Yth(i,j));
1 J& t! n/ ~& f2 y( B7 ^" H# tend
8 H2 b1 |2 R) @3 _
end
* |8 t5 q; V* s( x* e4 h/ Mend
( i! V5 R2 L, f! O" Q" v! G6 Qfor i=1:30 %ÐγÉ43-72ÐеÄ1-60ÁÐ
. t. f, a( L) O* D+ X& T4 X1 ^+ G) H
for j=1:30 tempVp=0; tempVq=0;
7 Z+ `- T8 C' o8 ?if (j==i)
1 b2 w7 g0 K8 Z9 r5 L7 h! i, D2 N) X
for k=1:30 tempVp=tempVp+aY(j,k)*V(k)*sin(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-aY(j,k)*V(k)*cos(Vth(j)-Vth(k)-Yth(j,k));
! A, w7 ]% y. d, a9 d" iend
tempVp=tempVp-V(j)*aY(j,j)*sin(-Yth(j,j)); tempVq=tempVq+V(j)*aY(j,j)*cos(-Yth(j,j)); Jh(42+j,i)=V(i)*tempVp; Jh(42+j,30+i)=V(i)*tempVq;
6 {( _( z' o& ~* B+ oelse
Jh(42+j,i)=-aY(i,j)*V(i)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); Jh(42+j,30+i)=aY(i,j)*V(i)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j));
4 t; D8 D- z2 hend
8 v5 w |2 d7 N. T- Q2 Pend
% A+ y) C2 p8 f r/ {end
. X0 x4 ]: k5 c
%Third Step: Hh
: V! F7 A D8 N0 g9 B. N%Óй¦²¿·Ö
. H O; J# {$ D6 V6 Zfor i=1:30
* F' F- z' Y7 t; c' }+ n' ~9 [, m) v
for j=1:30 8 v9 M) f4 }. Y$ t% H$ q/ u7 i
for k=j:30
, A6 \9 p! r6 r, t. kif (j==k&&i~=j)
Hh(j+12,k+12,i)=0; %VV Hh(j+42,k+42,i)=V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %%thth
3 \2 n4 S- I! ^) a( Zelseif (j==k&&i==j)
Hh(j+12,k+12,i)=-2*aY(j,j)*cos(Yth(i,i)); %VV temp=0; %thth ' M g5 h7 U+ H5 c( c
for l=1:30 temp=temp+aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); ! _9 t: \: |' U6 b3 q
end temp=temp-aY(i,i)*V(i)*cos(-Yth(i,i)); Hh(j+42,k+42,i)=V(i)*temp;
0 M3 m6 e1 D t- b9 belseif (k==i)
Hh(j+12,k+12,i)=-aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
4 T0 v* k; v5 @4 \3 w( gelseif (j==i)
Hh(j+12,k+12,i)=-aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,k)*V(k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
& W3 s( k8 {3 Eend
: g5 Z. r8 F( w- h' \6 N, H* @
end & q4 r. q5 `( e+ t9 ?1 G9 N5 [
end 4 }# ^$ D+ Q0 y1 t) p
end, @2 F6 n* q; @
%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
+ J' n# z# T' Dfor i=1:30
+ [' K) ^0 l) r N7 _+ t4 y
for j=1:30
8 f s4 O! @# W, U K% ]; K3 pfor k=1:30
& R& o F1 {% iif (j==k&&i~=j)
Hh(j+42,k+12,i)=-V(i)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV , \5 l4 O( n& j
elseif (j==k&&i==j) temp=0; %thV + ?- `( H+ l! Q$ _
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); % ~& D# {2 x9 e
end Hh(j+42,k+12,i)=temp-V(i)*aY(i,i)*sin(-Yth(i,i));
) p* i) j7 n. |" H$ `, Helseif (j==i)
Hh(j+42,k+12,i)=V(i)*aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thV & R6 N; S# U8 T/ s8 O# X& z
elseif (k==i) Hh(j+42,k+12,i)=-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV 8 Q* B% } u8 c7 ~# E6 c. v: ?" y
end
: {& J2 }. C& t) h; J5 kend
0 c# g5 i: o0 Z! R6 R5 ]+ Fend
Hh(13:42,43:72,i)=Hh(43:72,13:42,i)'; , G9 P3 O2 o7 h$ e, G0 C
end! A2 V" O* J; @2 b: s8 F6 h/ h$ B/ R
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£© $ [& {2 x1 Q* E( ^& l, J- m
%ÎÞ¹¦²¿·Ö
/ m8 a4 G! P4 y- E/ ~! t' qfor i=1:30
4 y. v; }. d( B( ]" o, m: Y4 j4 f$ b
for j=1:30
/ h9 k; a4 z# ^1 q- P7 ]2 \for k=j:30
8 F) k& Q0 P6 W: R7 O3 `% j1 lif (j==k&&i~=j)
Hh(j+12,k+12,i+30)=0; %VV Hh(j+42,k+42,i+30)=V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %%thth
9 @, F" n) h N) E, L& @5 y0 }# Yelseif (j==k&&i==j)
Hh(j+12,k+12,i+30)=2*aY(j,j)*sin(Yth(i,i)); %VV temp=0; %thth
( o9 B) o' L b! Wfor l=1:30
temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); - G8 j' B3 q$ t4 K
end temp=temp-aY(i,i)*V(i)*sin(-Yth(i,i)); Hh(j+42,k+42,i+30)=V(i)*temp; ! G) N4 _# C4 s& l; Z l
elseif (k==i) Hh(j+12,k+12,i+30)=-aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); " s9 o4 I9 C, |3 O- F' x
elseif (j==i) Hh(j+12,k+12,i+30)=-aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i+30)=-V(i)*aY(i,k)*V(k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30);
# ]4 s& z [& j( I7 D0 gend
8 z: q8 }! W8 E" Y w8 W! oend
* i& e. ~/ M0 x% C# D- iend
8 i* \8 y2 E* w3 N& |* w/ mend
3 Q/ v. F- J6 g2 c9 r( H: _%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
3 S7 X9 i$ ?/ b) h& ufor i=1:30
. [4 t" ?- e- B4 V4 C- `for j=1:30
- G2 y2 I* m% ]. {; s, v: A1 B' I- d' p! rfor k=1:30
$ P0 l- ~* S. ]. Z4 A% k+ V2 d
if (j==k&&i~=j) Hh(j+42,k+12,i+30)=V(i)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV
' A2 H8 O* J3 e6 N" velseif (j==k&&i==j)
temp=0; %thV ) q" s$ f* @: Z2 B+ A, {
for l=1:30 temp=temp-aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); ; D1 I* p6 y2 H k0 m. {0 p
end Hh(j+42,k+12,i+30)=temp+V(i)*aY(i,i)*cos(-Yth(i,i));
( a+ h( V% Z) `/ o5 G* n0 belseif (j==i)
Hh(j+42,k+12,i+30)=-V(i)*aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thV
$ S" S" ]$ T2 i- M1 I! {: m) gelseif (k==i)
Hh(j+42,k+12,i+30)=V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV / M' J N0 u( C, q
end & H h% e) [7 }; @8 D* _; j
end $ _4 m0 X6 X) r+ B
end Hh(13:42,43:72,i+30)=Hh(43:72,13:42,i+30)'; ' I c! h. {1 f7 Y: }7 H7 _' P
end
. o; r% a$ j9 T/ o- Z& j" o9 i%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£© 4 Y) u: C' @5 |6 t5 i
%HhÐγÉÍê±Ï % @$ u7 Q O6 x8 b3 ~ C/ O# b
%Fourth Step: Jg, Hg Jg=eye(42,42); Jg=[Jg;zeros(30,42)]; Hg=zeros(72); 5 r) V- p6 r! {, }9 J# P
%Calculation Jacobian&Hessian matrix END 3 X. S% R2 ?' A
%% % d! Q- t/ C( C3 x. F
%Calculate Newton Iteration Îó²îµü´úÁ¿
1 E' V+ b( ~; @* n0 t+ x, e, F%Cal LX0-------------------------1
LX0=Jf-Jh*Lam+Jg*(-MU_MIN+MU_MAX);
2 P4 l& g2 X. d0 D%Cal LLam-------------------------2
LLam0=h; pferr=max(LLam0); , @) R. h* d5 Q7 @% o
%Cal LMU_MIN-------------------------3 LMU_MIN0=g-sl-gmin; " i' P1 i4 Y- K' L9 ^) t% Q8 G6 [
%Cal LMU_MAX-------------------------4 LMU_MAX0=g+su-gmax;
3 g+ e- j8 q% k3 ^7 M9 l+ I& `# P%Cal Lsl-------------------------5
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MU*ones(length(sl),1);
$ j+ p3 Z! y* s( Z6 G/ S; c%CAl Lsu-------------------------6
Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MU*ones(length(su),1);
$ T7 e+ R. A" H9 I%Calculate Newton Iteration Îó²îµü´úÁ¿ END!!!
; R, q4 V% R* H5 W$ V%%
8 C* q- L( k# v0 y
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ ) N8 x1 B' M: ], ~3 H4 F \, w
%1st Step: ·ÂÉäÐÞÕýÁ¿delXaf,·ÂÉäÐÞÕýÁ¿delLamaf
1 p3 B: L: k0 z/ e%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã $ a0 H) ^3 r2 o( [# s
for i=1:60 temp=temp+Lam(i)*Hh(:,:,i); ' V) N3 c w; M* d; I
end tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; 2 I5 {( p" B; ^5 d
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i);
# s9 s7 M/ ^% b9 q9 O! I- k" Fend
tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; 4 \. G* Z2 I. ]/ }% \
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
7 Z, G, Y2 U6 ~7 Mend
H=Hf-temp+tempgMUg1+tempgMUg2;
5 X3 W. `( J" o; S( a5 }9 R%S2:·ÂÉäKESAaf
tempgMUg1=0; tempgMUg1=diag(MU_MIN)*sl+diag(MU_MIN)*LMU_MIN0; 7 @0 y% `0 u' i' j, S! ?
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i); " n# n% }2 R) b( ^( O! N
end tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=diag(MU_MAX)*su-diag(MU_MAX)*LMU_MAX0; % U4 M* E# o& [# b$ I
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i); 9 f* x/ P0 n7 p. O8 l
end tempgMUg2=Jg*tempgMUg2; KESAaf=LX0+tempgMUg1-tempgMUg2;
- e# K3 Q' u& e% {( U; h% u" i%S3:JACOBIAN
JACOBIAN=[H -Jh;Jh' zeros(60)]; % q9 U- {$ T8 d: H4 D# ^
%S4£ºRESULT RESULT=-[KESAaf;LLam0];
* E& u& j. c$ i5 d! {& P! A1 P%S5:Cal ·ÂÉäÐÞÕýÁ¿delXaf,·ÅÉäÐÞÕýÁ¿delLamaf
delXaf=-Jh'\LLam0; delLamaf=Jh\(H*delXaf+KESAaf); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end ! L! p: X L7 a7 ?- ]9 j; K
* e; h" Y8 B4 p( r' i! p' f% ^
%2nd Step: ·ÅÉäËɳڱäÁ¿ÐÞÕýÁ¿delslaf, delsuaf 8 Z0 e" M- s1 G- `* K5 y# z9 C
%S1: delslaf delslaf=Jg'*delXaf+LMU_MIN0; , w; z6 S/ K3 O2 o
%S2: delsuaf delsuaf=-Jg'*delXaf-LMU_MAX0; ) N0 G$ ^! x$ k8 ?" G9 X
, h% K! D: f$ s, `$ i%3rd Step: ·ÅÉäÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MINaf,delMU_MAXaf
7 E, z+ n! v( k' L% o) i
%S1: delMU_MINaf temp=0; temp=-Lsl0-diag(MU_MIN)*delslaf;
" {% W/ \! Q, X( W0 ]for i=1:42
temp(i)=temp(i)/sl(i); % f9 Q- i& X1 f4 v( |7 Q+ j
end temp(13)=0; delMU_MINaf=temp; # p7 N( |9 t4 y
%S2: delMU_MAXaf temp=0; temp=-Lsu0-diag(MU_MAX)*delsuaf;
( f9 k4 k1 D3 N) N `) Sfor i=1:42
temp(i)=temp(i)/su(i);
. e) M. r1 S" H4 V) e0 W" uend
temp(13)=0; delMU_MAXaf=temp;
& Y+ {4 p1 B& }
. B$ T! E- I5 X5 _6 [%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ END!!!!!!!!!!!!!!
" g: Q7 I' X# P! n
( m! }0 k6 j7 I
%%
1 t0 O4 ?6 a6 o S- j. {%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPpaf£¬ STEPdaf
4 n) `1 x! w! D7 }
%S1: STEPpaf
7 ?1 r2 Y, s& g9 ? tfor i=1:42
4 o+ U8 s7 r: o. j; W, @) b* [if (delslaf(i)~=0)
temp1=-sl(i)/delslaf(i);
, d* a, z6 w+ V7 Velse
temp1=Inf;
7 Z. C2 r- {7 l% y! E N6 [end
& y C, m/ R7 Y! O. _
if (delsuaf(i)~=0) temp2=-su(i)/delsuaf(i);
6 E4 P; L2 u7 X3 v1 ]+ Y7 ?* Kelse
temp2=Inf;
% l/ `% q: |0 K! ?. ^/ ]end
' }/ I) Z; ~! \0 }
if temp1<temp2 min=temp1;
% r+ k) Q8 d3 Z2 \" ielse
min=temp2; " p; ?# n3 S( G- {) {& B
end
4 ?% d' ]. P) y! ~1 Oif min>1
min=1;
% Y S. [: z# J3 K% N4 `8 [end
1 a( P: C5 M% ^* ~7 P- S7 ~- Eend
STEPpaf=0.9995*min;
: Q# {4 g- t& D9 i6 u%S2: STEPdaf
# f4 k( Y0 q5 ?; a( Tfor i=1:42
temp1=-MU_MIN(i)/delMU_MINaf(i); temp2=-MU_MAX(i)/delMU_MAXaf(i); a$ g+ q1 b7 g
if temp1<temp2 min=temp1; 0 B+ _3 s e' P5 @8 j5 C6 s" e# N
else min=temp2;
6 d/ E3 b& Z& m: y+ }. V$ U8 [" bend
# c" r$ O/ M; l$ R
if (i==13) min=0;
4 A. O7 y) _& ?7 G! E7 E3 R3 send
{ B' P; c# |+ ^ tif min>1
min=1;
0 |0 c% @1 ?4 I3 i/ r+ oend
$ X4 P' Q1 b4 y q$ [end
STEPdaf=0.9995*min; 5 e% }) s0 C; r2 S8 `
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd END!!!!!
$ d, ~* p) S& Y4 f, t
- N# j: o8 x3 a, d5 O%¼ÆËã·ÂÉä¶ÔżÒòÊý¼°³Í·£Òò×Ó%
ROUaf=(sl+STEPpaf*delslaf)'*(MU_MIN+STEPdaf*delMU_MINaf)+(su+STEPpaf*delsuaf)'*(MU_MAX+STEPdaf*delMU_MAXaf);
5 C# `) E/ @! W* {, Mif (ROUaf/ROU)^2<0.2
SIGMA=(ROUaf/ROU)^2;
5 t0 _* J5 M: ~8 B! L" jelse
SIGMA=0.2;
2 v4 x/ E( N0 D. n4 S; s% F/ b: ?: Mend
MUaf=SIGMA*ROUaf/(2*length(sl));
* `" Y2 d1 ~& a+ E4 v! G/ T# C) ?%¼ÆËãÍê±Ï%
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MUaf*ones(length(sl),1)-diag(delslaf)*delMU_MINaf; Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MUaf*ones(length(su),1)-diag(delsuaf)*delMU_MAXaf;
+ B) `! t% ^! P6 L% Y1 ~%Calculate Newton Iteration ÐÞÕýÁ¿
- i4 ]. {7 o9 Y: s; I6 d+ E%1st Step: УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam
0 v0 Z3 Z4 P8 v) \& o9 |9 C
%S1:H temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã 5 z" ~7 V9 ~3 q C3 |- N( Y$ v3 Y
for i=1:60 temp=temp+Lam(i)*Hh(:,:,i);
# s) K$ ?1 O& B! A( Q: O8 nend
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; ! @0 Q. x3 `# T X2 a( {# k
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i);
! W5 {) K. Z+ x# H2 e, _2 V. Iend
tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; $ ^2 }6 C4 o9 r
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
) H* F. L9 q* q0 c u: s) O3 Mend
H=Hf-temp+tempgMUg1+tempgMUg2; 8 }# W# V! y, q' v
%S2:УÕýKESA tempgMUg1=0; tempgMUg1=Lsl0+diag(MU_MIN)*LMU_MIN0+diag(delslaf)*delMU_MINaf; % }' s' w2 Y$ ]+ t
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i); ! T: {" B' B% K
end tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=Lsu0-diag(MU_MAX)*LMU_MAX0+diag(delsuaf)*delMU_MAXaf; y2 n; w* i0 q) n2 Y: @: Z
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i); 0 x A4 t: x7 P- v" d8 C' T6 h
end tempgMUg2=Jg*tempgMUg2; KESA=LX0+tempgMUg1-tempgMUg2;
8 j) B' G0 Y2 {: g8 d/ A4 A" [" W' a%S3:JACOBIAN
JACOBIAN=[H -Jh;Jh' zeros(60)];
. u- D, C ~5 A6 i4 t1 a9 W2 [%S4£ºRESULT
RESULT=-[KESA;LLam0]; # r9 Z" W7 E6 @
%S5:Cal УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam delX=-Jh'\LLam0; delLam=Jh\(H*delX+KESA); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end 8 E/ Z8 m) t; f1 H& H; V# \
9 T2 ~ Q7 B, [6 o$ i) [+ U
%2nd Step: УÕýËɳڱäÁ¿ÐÞÕýÁ¿delsl, delsu
8 j( G3 r4 r% b; i7 A$ A4 \%S1: delsl
delsl=Jg'*delX+LMU_MIN0;
) P7 n5 B2 l/ R5 B/ w- W. j* n/ F%S2: delsu
delsu=-Jg'*delX-LMU_MAX0; 0 {9 n! \6 U. D1 I2 d f
+ c: y% E6 \+ d' c& e( p%3rd Step: УÕýÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MIN,delMU_MAX
! t1 J* s. h2 T0 @: |7 u%S1: delMU_MIN
temp=0; temp=-diag(MU_MIN)*sl+MUt*ones(42,1)-diag(delMU_MINaf)*delslaf-diag(MU_MIN)*delslaf;
2 [) n" Y5 z4 e5 G6 nfor i=1:42
temp(i)=temp(i)/sl(i); ) p4 ^4 e7 b# L* w# n
end temp(13)=0; delMU_MIN=temp;
: z0 m* F3 k/ B) W%S2: delMU_MAX
temp=0; temp=-diag(MU_MAX)*su+MUt*ones(42,1)-diag(delMU_MAXaf)*delsuaf-diag(MU_MAX)*delsuaf; 5 l2 [$ |) \2 D& q7 o
for i=1:42 temp(i)=temp(i)/su(i);
; B/ O4 P% m2 k) V' y9 T3 nend
temp(13)=0; delMU_MAX=temp; * y3 G; ~: G0 D" N, h& p- h. z* v
) f5 k" e6 B: D W2 E%Calculate Newton Iteration ÐÞÕýÁ¿ END!!!!!!!!!!!!!!
" M9 U: d3 t% J V) L! D- Z1 u2 F
%%
) {& M) G) y* M0 c%¼ÆËãУÕýÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd
; ~; S) {1 G% |4 \. |
%S1: STEPp 3 V' \1 D* m! F1 Y8 n" z, V
for i=1:42
) C2 o" f$ d: d; y; R+ s+ B! hif (delslaf(i)~=0)
temp1=-sl(i)/delsl(i);
' V( F V, l* a) h$ relse
temp1=Inf; 5 ]( ~1 k& K1 O
end * Q% i2 q4 K9 M; A) d
if (delsuaf(i)~=0) temp2=-su(i)/delsu(i); 4 X2 S5 q$ `$ E6 S
else temp2=Inf;
, y. J, o; y! F4 P% R' m y) V5 Oend
! ~. \7 T7 t9 N' }# l3 o; w7 V" N
if temp1<temp2 min=temp1;
; h- x1 T( T* n1 {. p: C2 }else
min=temp2;
5 V% N* V7 Q) w; ]2 z7 Mend
% F+ B0 I0 u3 X, f' o7 U: l
if min>1 min=1;
/ L9 Y0 ?: N9 T5 i* hend
6 Q2 k- N1 u0 e1 a a6 A" U
end STEPp=0.9995*min;
1 S# E, c5 c8 X5 [1 r2 m) w" W" @%S2: STEPd
# k) v4 k* W+ c; u: Q g' I+ tfor i=1:42
temp1=-MU_MIN(i)/delMU_MIN(i); temp2=-MU_MAX(i)/delMU_MAX(i); 1 q/ N2 d" B+ S* u( M8 x
if temp1<temp2 min=temp1; , l* e# \" M$ B5 E$ B
else min=temp2; . |5 ?9 G, `7 }2 B' S
end : ]+ g2 ]* E( D& ~# q" j
if (i==13) min=0; / z) I& K4 B+ h0 [2 X
end
% T$ _$ v/ ?$ pif min>1
min=1; 9 {. w U8 B1 g
end
# B. O/ D5 A1 ]/ aend
STEPd=0.9995*min;
5 q, Q O2 Z$ t. q' k%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿
X=X+STEPp*delX; Lam=Lam+STEPd*delLam; sl=sl+STEPp*delsl; su=su+STEPp*delsu; MU_MIN=MU_MIN+STEPd*delMU_MIN; MU_MAX=MU_MAX+STEPd*delMU_MAX; Pg=X(1:6);Qg=X(7:12);V=X(13:42);Vth=X(43:72); 1 o' z+ [" F/ E- O7 m( R* _1 l
%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ END!!! # G6 v( o) {. I" r. ~2 ]" n" B' i. [
* \! V. a5 j3 [%¼ÆËã¶Ôż¼ä϶%
ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl)); ) v( ^+ y/ g3 o, ^7 S8 z
%%
* q, Y/ @2 c1 [ E' `* i* h1 o4 j%ÅжÏÊÇ·ñ³¬¹ýµü´ú´ÎÊý
ik=ik+1;
8 f: t/ W& Q* ?2 m1 Gif ik>IterNumMAX
disp('IterNum ERROR!!!!!'); 8 ~1 o6 Q. d5 F, T- B
break;
! N+ h0 \- K' G/ E& b/ T( Z9 O( |end
9 a/ ]4 [5 R8 f: x" N7 D1 y! v, b& j
end et = etime(clock, t1); %% %Êä³ö²¿·Ö
/ e4 [+ R7 ?% ?8 V8 u d1 m
if (ik<=IterNumMAX)
+ \: \$ \6 ^5 {( g9 U%%
( Z) v! A; W" |' S# T
%ÇóµÃ×î´ó×îСµÈʽÎó²î F=0; for i=1:6 F=F+gencost(i,5)*(X(i)*baseMVA)^2+gencost(i,6)*X(i)*baseMVA; end 5 \: r: E- X- c7 x4 I+ s' }9 q4 J
max=-10;min=10; for i=1:ik temp=LLam0(i); 4 N, F( T$ ~) X& s& i& T: X
if (temp>max) max=temp;
- {5 M/ J9 ]' U) i3 q+ [- Mend
! B& |9 y, m% E+ H) Z& Q
if (temp<min) min=temp; " A8 ]" U) E U) J8 d" r# m
end end max ik %% %Êä³ö½á¹û fprintf('\nConverged in %.2f seconds', et); fprintf('\nObjective Function Value = %.2f $/hr', F); fprintf('\n================================================================================'); fprintf('\n| Bus Data |'); fprintf('\n================================================================================'); fprintf('\n Bus Voltage Generation Load '); fprintf(' Lambda($/MVA-hr)'); fprintf('\n # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)'); fprintf(' P Q '); fprintf('\n----- ------- -------- -------- -------- -------- --------'); fprintf(' ------- -------'); 9 F+ o& X4 h4 g7 ]
for i = 1:30 fprintf('\n%5d%7.3f%9.3f', i,X(i+12),X(i+42)*180/pi); ; Y2 {' M, Y5 r4 X7 B( E
if (i<=6) fprintf('%10.2f%10.2f', X(i)*baseMVA, X(i+6)*baseMVA); 3 g6 E/ v- B* r/ F4 o: w. {* ^
else fprintf(' - - '); 3 b4 w: v/ |( }; m$ B1 A
end fprintf('%10.2f %9.2f', bus(i, 3) , bus(i, 4) ); fprintf('%9.3f %9.3f', Lam(i),Lam(i+30)); & r! \6 U0 c. d( Q
if (i==30) fprintf('\n -------- -------- -------- --------'); fprintf('\n Total: %9.2f %9.2f',(X(1)+X(2)+X(3)+X(4)+X(5)+X(6))*baseMVA,(X(7)+X(8)+X(9)+X(10)+X(11)+X(12))*baseMVA) fprintf('\n');
; Q% w+ l G& _# a, ]0 Dend
7 U/ Z! A# c u9 H9 q0 \3 Z* w( w' Lend
! K* T+ z; W7 n3 V% m% u8 M5 l; ]3 v
%% %%Êä³öÇúÏßÄâºÏmain iterNum=[1:ik]'; %axis([0,ik+1,min,max]); hold on; f = fit(iterNum,errArr,'spline'); f=feval(f,iterNum); plot(iterNum,errArr,'o',iterNum,f,'-'); end |