回复 2# redplum
' V. W0 v1 \, M+ z1 ^( f' q6 Y4 A6 L" }5 l: K# O& u
7 F) g6 j! j4 S1 B/ p- N3 @- j( u% q
首先谢谢指教2 f/ @0 V& _, i8 m. k
下面是这个程序,指教一下那里需要修改啊clear; clc; errArr=[]; %% %³õʼ»¯£¡£¡£¡ initial; % Start clock t1 = clock; %% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));%³õʼ¶ÔżÒò×ÓÓë³Í·£Òò×Ó¼ÆËã% ik=0;%¼Æµü´ú´ÎÊý£¡£¡£¡ %µü´úÑ »·¹ý³Ì£¡£¡ while(abs(ROU)>=err) 8 @( k( x2 ^- L* n1 Y' ]
%%
$ r! q" A" Q& a2 |6 b- @2 _%Calcute h,g matrix
ROU=sl'*MU_MIN+su'*MU_MAX; errArr=[errArr;ROU;]; SIGMA=0; MU=SIGMA*ROU/(2*length(sl)); %ÖÐÐIJÎÊýÖÃÁã% . A& ^- H! ~9 a0 r( p! x) ~: J
for i=1:30 temp=0; $ h) _0 Q& j( m Y4 m9 B4 s
for j=1:30 temp=temp-V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j));
. V$ a# g0 w! h0 U! Jend
/ m3 m8 C$ Z/ {7 a
if (i>6) tPg=0;
6 @- F4 r9 q9 D1 O! |else
tPg=Pg(i); ) J0 ?9 P! T3 ] k+ T5 ~
end h(i)=tPg-Pd(i)+V(i)*temp;
$ q% u% J( Z6 ?) dend
" Y6 U" H* K d6 R2 ^for i=1:30
temp=0;
% q& L+ h9 U t7 ?, bfor j=1:30
temp=temp-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j));
. c4 _4 G1 n1 ?/ ^$ `, {end
+ j- g( T! `& o
if (i>6) tQg=0;
. e+ z8 z/ n9 a9 q9 o2 B# Celse
tQg=Qg(i);
4 B' F; V4 y, `% Y/ b Gend
h(i+30)=tQg-Qd(i)+V(i)*temp; - I. V. t; O+ M4 z4 g3 V& N
end
0 C0 U. B+ C* C+ K) b( }% Cal h END
1 c9 J; x' u0 g7 T
* t, A# M e# P/ o$ m( P. m ]
for i=1:6 g(i)=Pg(i); g(i+6)=Qg(i); 3 T! k s0 S( E" R$ d. ? ~! Y( H3 N' s
end v# ^5 {" Q/ [' X" G
for i=1:30 g(i+12)=V(i);
0 `, T& S- m+ s. H1 S/ Cend' k5 g& T( K$ Z# f. I
% Cal g END
" j; Q4 v _/ }# T8 E5 i%Calcute h,g matrix END
4 u4 n. \4 X+ s6 B' c0 G
%%
5 Z2 b. S3 C+ c2 S. Q# L1 |3 Z%Calculate Jacobian&Hessian matix
5 l1 V4 g% q1 l* D$ {%First Step: Jf,Hf
# C) @# r& J. s f$ n1 H% c
for i=1:6 Jf(i)=2*gencost(i,5)*Pg(i)+gencost(i,6); Hf(i,i)=2*gencost(i,6);
' g# N/ f5 M6 M) `! `/ @2 @end
3 ?$ e5 ^$ H O5 {3 C
%Second Step: Jh, hΪµÈÊ½Ô¼Êø
' [; ^8 X, z, ^9 jfor i=1:6 %ǰ6ÐжÔPgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i)=1;
0 j! J2 z3 J* w2 |0 rend
$ Q6 D7 u" j. B: S
for i=7:12 %7-12ÐжÔQgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö Jh(i,i+24)=1; + Z' L+ L" g- E( m3 h; y7 k
end
1 B7 `+ P: p1 j' B; E4 C# Pfor i=1:30 %ÐγÉ13-42ÐеÄ1-60ÁÐ
: c3 \1 Z$ e% x4 v
for j=1:30 tempVp=0; tempVq=0; 2 m h6 W6 V, `) e3 ^& |
if (j==i) / Y9 E$ o: ]/ f- X/ p8 N
for k=1:30 tempVp=tempVp-V(k)*aY(j,k)*cos(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-V(k)*aY(j,k)*sin(Vth(j)-Vth(k)-Yth(j,k)); ) u8 q* n- q/ n$ {/ l; O
end Jh(12+j,i)=tempVp-aY(j,j)*V(j)*cos(Yth(j,j)); Jh(12+j,30+i)=tempVq+aY(j,j)*V(j)*sin(Yth(j,j));
3 y# ?8 E3 L* A% F4 uelse
Jh(12+j,i)=-aY(i,j)*V(i)*cos(Vth(i)-Vth(j)-Yth(i,j)); Jh(12+j,30+i)=-aY(i,j)*V(i)*sin(Vth(i)-Vth(j)-Yth(i,j)); / n3 e7 Z" l4 P/ ^
end
" a+ R! J* S$ zend
. j1 v4 y8 c2 Vend
% Y" j& }. I& x" {for i=1:30 %ÐγÉ43-72ÐеÄ1-60ÁÐ
* a7 d1 O# }3 E+ p- Y3 r
for j=1:30 tempVp=0; tempVq=0; $ l; J1 h: x0 X4 R1 S; u% U s
if (j==i) # _: D8 m# S4 n4 u+ r0 W
for k=1:30 tempVp=tempVp+aY(j,k)*V(k)*sin(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-aY(j,k)*V(k)*cos(Vth(j)-Vth(k)-Yth(j,k)); 9 ~$ h1 c2 k" @6 i
end tempVp=tempVp-V(j)*aY(j,j)*sin(-Yth(j,j)); tempVq=tempVq+V(j)*aY(j,j)*cos(-Yth(j,j)); Jh(42+j,i)=V(i)*tempVp; Jh(42+j,30+i)=V(i)*tempVq;
) O3 \& ]+ L' W7 h) t4 \else
Jh(42+j,i)=-aY(i,j)*V(i)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); Jh(42+j,30+i)=aY(i,j)*V(i)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j));
( \. h6 \2 t' T( Aend
, ^( ?1 |! D& gend
! j/ ^) g/ C8 @+ Z
end
9 I3 x% v# ~. c5 H/ e8 a%Third Step: Hh
: |% M5 K6 r( d C4 X* c
%Óй¦²¿·Ö
5 ]4 q( E$ _. Kfor i=1:30
6 V2 |% x/ r: v1 n! m1 k% |
for j=1:30
2 @* a' R) i& W, h6 n d, |- k1 xfor k=j:30
$ j3 H5 Y7 b# s6 y
if (j==k&&i~=j) Hh(j+12,k+12,i)=0; %VV Hh(j+42,k+42,i)=V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %%thth
7 K' Y! t. S% M- melseif (j==k&&i==j)
Hh(j+12,k+12,i)=-2*aY(j,j)*cos(Yth(i,i)); %VV temp=0; %thth " b3 c) _& \, {
for l=1:30 temp=temp+aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l));
8 Q; V$ B$ u! D6 Z5 vend
temp=temp-aY(i,i)*V(i)*cos(-Yth(i,i)); Hh(j+42,k+42,i)=V(i)*temp; 2 \- ~% u6 Y; g! a
elseif (k==i) Hh(j+12,k+12,i)=-aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
2 z$ }8 }) h: |7 x! h' c; O/ X% ]elseif (j==i)
Hh(j+12,k+12,i)=-aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,k)*V(k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i); 2 l) {# V2 _6 r4 g+ K% T2 {
end
% U# a7 M, D7 n, rend
6 x* C/ Q+ _. B9 T
end ( b% d @3 y) ~* t+ S- S w C, G) S& U
end
* O+ a' q- d$ |& I( q; p7 v%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
8 u3 V0 Y. l: V h: {for i=1:30
: k4 |3 F, u" u$ I' M* Z, p
for j=1:30 & c/ c4 `5 e) K9 V" [. j% d Z
for k=1:30 ! H4 h# Y& c* H5 o7 A6 @$ x5 n2 g8 H
if (j==k&&i~=j) Hh(j+42,k+12,i)=-V(i)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV 6 g& E* [+ L" H
elseif (j==k&&i==j) temp=0; %thV ' y) U$ o, |9 Q. J& l
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); 8 |- b+ F( p2 P) d
end Hh(j+42,k+12,i)=temp-V(i)*aY(i,i)*sin(-Yth(i,i));
5 [0 V# C/ T2 _8 d1 l5 ~/ | xelseif (j==i)
Hh(j+42,k+12,i)=V(i)*aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thV / L2 t. s3 K/ A& d0 T4 L) \
elseif (k==i) Hh(j+42,k+12,i)=-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV
/ o5 x; {$ D, v# u7 ^9 ^end
$ p- \! X% K' {. `5 }* U
end 7 A. a" ~7 a# @
end Hh(13:42,43:72,i)=Hh(43:72,13:42,i)'; & n+ S. M2 ]) D% L+ Y, l0 o& c
end
4 @) r, H7 X2 w d, k%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£© & m2 H% H% l6 U/ a0 E
%ÎÞ¹¦²¿·Ö
" l. l) F* U9 I) ifor i=1:30
/ w/ l4 e6 Q* l. l. S8 o, e6 {! A
for j=1:30 ' J2 F9 G+ \) k7 G
for k=j:30 2 e/ ]% m; G5 n( [9 v0 Y, l
if (j==k&&i~=j) Hh(j+12,k+12,i+30)=0; %VV Hh(j+42,k+42,i+30)=V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %%thth |8 s+ x9 V& e0 X! Q
elseif (j==k&&i==j) Hh(j+12,k+12,i+30)=2*aY(j,j)*sin(Yth(i,i)); %VV temp=0; %thth # x" |1 \! I8 h. W
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); 9 l. d$ o2 \- [% Q) j
end temp=temp-aY(i,i)*V(i)*sin(-Yth(i,i)); Hh(j+42,k+42,i+30)=V(i)*temp; 4 B6 ]2 W* I3 y) @+ R- }# b
elseif (k==i) Hh(j+12,k+12,i+30)=-aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); * v8 q: _( J- W0 [* r C/ y" W
elseif (j==i) Hh(j+12,k+12,i+30)=-aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i+30)=-V(i)*aY(i,k)*V(k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); # M9 |: b0 P) o8 r g
end
/ p3 x& F: v( ^& Aend
# U$ M$ o) z" y2 Jend
% U3 E8 n% k& O- y* p7 X" O/ d5 \; A1 `! Y
end+ q( u" k2 {+ a( q) i H( x
%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
* R6 R* a& R1 J+ Yfor i=1:30
5 T$ a5 p# t9 ^6 h
for j=1:30 . @% J' p, x/ b( Q+ [- w/ W
for k=1:30 % q% V8 H( q( ^! u- P
if (j==k&&i~=j) Hh(j+42,k+12,i+30)=V(i)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV
9 J3 e: e+ { S) relseif (j==k&&i==j)
temp=0; %thV
$ |4 l. ~! A6 q: z7 cfor l=1:30
temp=temp-aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); 7 C* j& ~; m3 Z+ N
end Hh(j+42,k+12,i+30)=temp+V(i)*aY(i,i)*cos(-Yth(i,i));
3 `# ?3 s" K3 C" p7 helseif (j==i)
Hh(j+42,k+12,i+30)=-V(i)*aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thV
" K( c5 w6 }( Q3 Z/ D' u- F( Oelseif (k==i)
Hh(j+42,k+12,i+30)=V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV 9 F! R7 O# J* _
end * T) n5 M& p7 d3 d% a0 k; h) e
end . t- {/ a! h6 t. z! L' B3 I6 f( m
end Hh(13:42,43:72,i+30)=Hh(43:72,13:42,i+30)';
u9 g) s! A- f5 }" ]end, D4 U4 Q+ |2 }( |4 R0 a
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
. K0 [. {+ C, [) y$ A3 T0 V%HhÐγÉÍê±Ï
* H4 y5 `( a2 p$ }%Fourth Step: Jg, Hg
Jg=eye(42,42); Jg=[Jg;zeros(30,42)]; Hg=zeros(72); $ e& F' Q3 b8 X# N- t0 z
%Calculation Jacobian&Hessian matrix END 0 `! r- L4 d q6 ? f6 K/ S6 R
%%
5 T* F* K" G1 I/ i& t _%Calculate Newton Iteration Îó²îµü´úÁ¿
# J( f/ O+ A5 Z%Cal LX0-------------------------1
LX0=Jf-Jh*Lam+Jg*(-MU_MIN+MU_MAX); 8 H7 y; h, s( _5 @7 c+ k
%Cal LLam-------------------------2 LLam0=h; pferr=max(LLam0); 7 Z6 }& o8 I# d+ S/ S) }
%Cal LMU_MIN-------------------------3 LMU_MIN0=g-sl-gmin; & i$ d4 \ Z7 |+ g. J0 T
%Cal LMU_MAX-------------------------4 LMU_MAX0=g+su-gmax;
* _- N* s4 ~7 J8 x w' w2 h: _; e%Cal Lsl-------------------------5
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MU*ones(length(sl),1); , e3 |+ p. h( Z# U, W1 z8 y
%CAl Lsu-------------------------6 Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MU*ones(length(su),1);
$ H( A9 X& C) j: l4 b" \0 Q: l%Calculate Newton Iteration Îó²îµü´úÁ¿ END!!!
) V9 z; E& b( @% k4 w9 r+ a
%%
1 U0 q( U5 d" ?4 B9 g$ [" O+ K%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿
8 p1 G4 q$ d, _) Y# A8 f; M0 j
%1st Step: ·ÂÉäÐÞÕýÁ¿delXaf,·ÂÉäÐÞÕýÁ¿delLamaf . v+ u/ s; u5 E7 a& M# h. j
%S1:H temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã
0 M* \7 A6 W9 @& Yfor i=1:60
temp=temp+Lam(i)*Hh(:,:,i); - e) r) R/ h' K% J: q
end tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg';
+ P3 q) W& Y; l1 H0 @for i=1:42
tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); ) \3 i* }5 ^2 i4 s0 R
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg';
* t5 c3 ]( E( @. q9 _for i=1:42
tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
. t, P* D) p% F) \0 x3 m( V. [end
H=Hf-temp+tempgMUg1+tempgMUg2;
$ z1 p. N3 b/ Q* L) M4 s" C" K. D%S2:·ÂÉäKESAaf
tempgMUg1=0; tempgMUg1=diag(MU_MIN)*sl+diag(MU_MIN)*LMU_MIN0;
' v" T8 u0 g/ m7 I6 {. vfor i=1:42
tempgMUg1(i)=tempgMUg1(i)/sl(i);
+ W K% ^4 J1 W+ g. y, S. M7 @. uend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=diag(MU_MAX)*su-diag(MU_MAX)*LMU_MAX0;
8 F3 L( H: Z* O- |7 B- {/ ~( Bfor i=1:42
tempgMUg2(i)=tempgMUg2(i)/su(i); " I2 d0 H( }3 l1 ?; n3 H
end tempgMUg2=Jg*tempgMUg2; KESAaf=LX0+tempgMUg1-tempgMUg2; 8 n% g/ o: [) ^& `+ U& u4 U
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)];
% h4 W2 E, h5 y8 p$ m%S4£ºRESULT
RESULT=-[KESAaf;LLam0];
( F! A1 V" ?( b: O. `( Z%S5:Cal ·ÂÉäÐÞÕýÁ¿delXaf,·ÅÉäÐÞÕýÁ¿delLamaf
delXaf=-Jh'\LLam0; delLamaf=Jh\(H*delXaf+KESAaf); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end # u, w. S" U* u
0 O( [- @4 _' {; G. y
%2nd Step: ·ÅÉäËɳڱäÁ¿ÐÞÕýÁ¿delslaf, delsuaf
* Y+ v: f* P# V- A) a4 D+ Q6 V3 _%S1: delslaf
delslaf=Jg'*delXaf+LMU_MIN0;
) a# V* z: w& F3 {: z* Y%S2: delsuaf
delsuaf=-Jg'*delXaf-LMU_MAX0;
3 J3 g" m; I4 r, N0 J9 I9 C; M7 Y3 u
) A% j* ^! E6 l* c
%3rd Step: ·ÅÉäÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MINaf,delMU_MAXaf
; r2 u/ t0 F4 O3 m. \7 q- U2 k%S1: delMU_MINaf
temp=0; temp=-Lsl0-diag(MU_MIN)*delslaf;
4 u8 d7 o$ S; }: Z, t/ Cfor i=1:42
temp(i)=temp(i)/sl(i);
% Y. i. z9 y$ y# wend
temp(13)=0; delMU_MINaf=temp; ' j" ?2 l/ [. G8 R
%S2: delMU_MAXaf temp=0; temp=-Lsu0-diag(MU_MAX)*delsuaf; 9 z) C" d" }5 ^8 \. M
for i=1:42 temp(i)=temp(i)/su(i); V" `/ j9 g# x. ^3 X
end temp(13)=0; delMU_MAXaf=temp; ' y `9 Q1 C+ D
5 W2 [ e7 }' [2 {& j. [' `, I0 t
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ END!!!!!!!!!!!!!!
) b( P" H) ]( M1 Y* d/ ?
3 d5 w# Q: T( G7 O9 W9 W0 {
%%
6 E' ^: L6 R: ]$ e! Z( K%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPpaf£¬ STEPdaf
) ]- w/ f1 W4 }+ A- b% h
%S1: STEPpaf 5 |' J# _9 S- [) m
for i=1:42
! b( G/ K( I; s4 o, B8 Cif (delslaf(i)~=0)
temp1=-sl(i)/delslaf(i); / \4 I* p0 z9 b. K9 S, d9 D4 \
else temp1=Inf; * @! v6 d! V& ?8 m4 z" S w( x! o2 `3 E
end
! d( r. L9 u( Fif (delsuaf(i)~=0)
temp2=-su(i)/delsuaf(i); 2 z8 m! z. Z& C- j5 O
else temp2=Inf; 5 u: V" C3 _" J" _& [ K4 R
end ) B$ h/ W% v' I. J8 w
if temp1<temp2 min=temp1;
4 u! ?$ ]" q5 d% Jelse
min=temp2; : N$ P0 Y: `. m# _$ n- q
end
3 l* o9 C: e" r9 I( m" p" j' O$ l7 Hif min>1
min=1; 2 I7 t4 L9 u! N* J* |6 Z4 W
end
# _3 }, R- T6 Q& N( |6 K3 zend
STEPpaf=0.9995*min;
) c/ ^% F7 D/ E) p/ g! O6 w4 `0 P%S2: STEPdaf
3 U7 n, P) Q N: j
for i=1:42 temp1=-MU_MIN(i)/delMU_MINaf(i); temp2=-MU_MAX(i)/delMU_MAXaf(i); # U0 N2 w- L v9 P; @
if temp1<temp2 min=temp1;
1 L" y5 ?6 F3 V9 velse
min=temp2;
% y0 U/ V1 n" \1 q3 [end
" B- {7 }2 m# Q; p. I4 Gif (i==13)
min=0;
: ^# j$ V. `7 l/ \, o5 |end
5 F4 k1 E) V/ I! L
if min>1 min=1;
4 Y# M- n. u5 z; `8 Pend
) ^0 A; R2 k+ w' Yend
STEPdaf=0.9995*min; 5 d$ ?( U; }" x6 E
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd END!!!!! 4 b j/ D6 I% c0 t
# d' M, Z4 n; p, d$ c- M$ [) y%¼ÆËã·ÂÉä¶ÔżÒòÊý¼°³Í·£Òò×Ó%
ROUaf=(sl+STEPpaf*delslaf)'*(MU_MIN+STEPdaf*delMU_MINaf)+(su+STEPpaf*delsuaf)'*(MU_MAX+STEPdaf*delMU_MAXaf);
6 z# `8 J0 a* b9 ]3 G% ]; H3 Jif (ROUaf/ROU)^2<0.2
SIGMA=(ROUaf/ROU)^2;
* ~# l' \" w6 g1 Xelse
SIGMA=0.2;
7 h, r7 ^1 m8 K+ L- ?end
MUaf=SIGMA*ROUaf/(2*length(sl)); " Q* Y# `! N2 V" Q. I$ B
%¼ÆËãÍê±Ï% Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MUaf*ones(length(sl),1)-diag(delslaf)*delMU_MINaf; Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MUaf*ones(length(su),1)-diag(delsuaf)*delMU_MAXaf;
) p7 Z0 K7 t( h9 a- d, @%Calculate Newton Iteration ÐÞÕýÁ¿
+ d" o* e( C9 y) F%1st Step: УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam
7 `8 t$ B, P# I3 B0 ^%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã
; `! w/ A. F- J$ j, F0 mfor i=1:60
temp=temp+Lam(i)*Hh(:,:,i);
7 u+ G5 e6 ^1 |% B7 [, gend
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; * g& p- j3 l) N1 B- ^+ e+ p
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); : R0 O P5 Z( u) \
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; 8 w! Y! ~2 s U' o' |
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
/ J* B0 o8 l2 G0 Jend
H=Hf-temp+tempgMUg1+tempgMUg2; * E w7 M, T3 R( V0 m5 A
%S2:УÕýKESA tempgMUg1=0; tempgMUg1=Lsl0+diag(MU_MIN)*LMU_MIN0+diag(delslaf)*delMU_MINaf; 4 g2 _0 l$ J: Y8 \
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i);
5 `4 l2 Y: A( T. ]$ m$ V& Q" `0 Xend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=Lsu0-diag(MU_MAX)*LMU_MAX0+diag(delsuaf)*delMU_MAXaf;
2 I$ A& |# v/ H0 C ?for i=1:42
tempgMUg2(i)=tempgMUg2(i)/su(i);
8 y2 x' y9 |+ G7 I" v! x! B0 H- A! aend
tempgMUg2=Jg*tempgMUg2; KESA=LX0+tempgMUg1-tempgMUg2;
) v3 L: K) y- X1 X) X* N4 f%S3:JACOBIAN
JACOBIAN=[H -Jh;Jh' zeros(60)]; 3 `6 |! o; |& P" a# |
%S4£ºRESULT RESULT=-[KESA;LLam0];
1 r: `( G5 [: l8 ?%S5:Cal УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam
delX=-Jh'\LLam0; delLam=Jh\(H*delX+KESA); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end
5 k5 ~( I2 `) o3 ^, K
$ c3 l2 f( g' P8 y
%2nd Step: УÕýËɳڱäÁ¿ÐÞÕýÁ¿delsl, delsu " @$ ^8 ]. \. T% p P: ]
%S1: delsl delsl=Jg'*delX+LMU_MIN0;
2 `* p* r+ A9 P6 M. S/ ^* s%S2: delsu
delsu=-Jg'*delX-LMU_MAX0;
, L: i% k3 u& W4 ^) i) k1 B' d
- V7 V' T) A% J# i8 J' X) d( y%3rd Step: УÕýÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MIN,delMU_MAX
8 w5 {8 B$ i0 {, H8 Z# t+ f%S1: delMU_MIN
temp=0; temp=-diag(MU_MIN)*sl+MUt*ones(42,1)-diag(delMU_MINaf)*delslaf-diag(MU_MIN)*delslaf; * N' W0 E9 o5 G" i
for i=1:42 temp(i)=temp(i)/sl(i); 6 o' E6 j2 H! A o9 f& z0 f: r' ]
end temp(13)=0; delMU_MIN=temp;
3 W5 b1 M0 \' d$ j/ f$ u- V9 y%S2: delMU_MAX
temp=0; temp=-diag(MU_MAX)*su+MUt*ones(42,1)-diag(delMU_MAXaf)*delsuaf-diag(MU_MAX)*delsuaf;
+ i- u8 c! s2 y, O8 p3 I* }1 Pfor i=1:42
temp(i)=temp(i)/su(i);
* {7 C7 B9 Y- k, X/ Send
temp(13)=0; delMU_MAX=temp; - m( |, t# {1 u! l$ a9 {2 R) U
9 p# l9 q* [/ ^" ^$ d8 E3 J
%Calculate Newton Iteration ÐÞÕýÁ¿ END!!!!!!!!!!!!!!
5 p' Y1 o2 v# J%%
1 E ?. M l3 {$ w! v- {8 m%¼ÆËãУÕýÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd
" q! A7 Y5 }) \%S1: STEPp
3 a. [$ r& n7 P" Z9 I
for i=1:42
8 s6 R4 R. t" J& Tif (delslaf(i)~=0)
temp1=-sl(i)/delsl(i); $ e4 Q# a }8 X' Q0 {5 N+ B
else temp1=Inf; / K& O, f4 }- E0 g
end & W$ ^2 ]5 T( s9 t0 }2 i
if (delsuaf(i)~=0) temp2=-su(i)/delsu(i); " G7 T$ X; ~: E! e
else temp2=Inf;
+ O& n- v9 [" E0 l, R) x3 Pend
9 ~; e" h$ a. o0 d! H1 [$ \3 j) t
if temp1<temp2 min=temp1; * R6 f& `. {0 f: Q( o: _8 E- N
else min=temp2;
9 ^+ j( p% d- ^3 wend
; E3 e$ ^" W) g1 ~6 J
if min>1 min=1;
" I8 f6 U7 z6 @9 o2 j% C4 eend
) G$ D4 L/ B U$ t2 m1 s
end STEPp=0.9995*min; 5 v% A p. C- Y" D. Z- v
%S2: STEPd 8 ?2 e: w! p0 A/ z( U
for i=1:42 temp1=-MU_MIN(i)/delMU_MIN(i); temp2=-MU_MAX(i)/delMU_MAX(i);
J0 E$ `. H# s7 T3 d2 x4 S3 G3 eif temp1<temp2
min=temp1;
6 N# h8 z3 H4 b- k+ j+ \else
min=temp2;
u$ F( S% n$ g. M8 Lend
% H0 Z6 `, J, n% S; Y( N
if (i==13) min=0;
$ r* f' f: Y5 V$ s" E. L4 n8 b. Rend
( \2 H, L: ?4 Sif min>1
min=1; & u7 m1 L/ l& Q! U
end
/ S2 D( N5 Q- Zend
STEPd=0.9995*min; , k: k: @% `, u. u2 q Z; Y
%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ X=X+STEPp*delX; Lam=Lam+STEPd*delLam; sl=sl+STEPp*delsl; su=su+STEPp*delsu; MU_MIN=MU_MIN+STEPd*delMU_MIN; MU_MAX=MU_MAX+STEPd*delMU_MAX; Pg=X(1:6);Qg=X(7:12);V=X(13:42);Vth=X(43:72); . w: t( O% i# S+ B/ C7 y& }
%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ END!!! 1 _5 M" U+ }9 s' | s* b
0 I) h5 b! D; d' X$ C7 n3 x2 S%¼ÆËã¶Ôż¼ä϶%
ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));
# Q ?/ z# q4 M7 M1 q! b%%
; E' K' G- b9 P+ Z; R% r' |
%ÅжÏÊÇ·ñ³¬¹ýµü´ú´ÎÊý ik=ik+1;
) L8 m) v/ T- n% c9 lif ik>IterNumMAX
disp('IterNum ERROR!!!!!'); . x, r k& `; n& U' U1 q' F& B/ W& E
break;
o0 \& h& N2 e% Q4 @5 Oend
/ L T" i) i$ @
end et = etime(clock, t1); %% %Êä³ö²¿·Ö % O4 l! a+ q5 E q K1 t& W
if (ik<=IterNumMAX) 8 {) F5 f+ p. K T
%% + b% c' [9 `9 f) a
%ÇóµÃ×î´ó×îСµÈʽÎó²î F=0; for i=1:6 F=F+gencost(i,5)*(X(i)*baseMVA)^2+gencost(i,6)*X(i)*baseMVA; end
0 i" ^9 P$ z, c' c4 N" [$ v! T
max=-10;min=10; for i=1:ik temp=LLam0(i); / g; k/ g+ }+ ?- T _
if (temp>max) max=temp; 6 t! m5 F! U% Q
end
n( ?) c8 J3 A' Y1 Gif (temp<min) min=temp;
& S* m6 c2 _* @" p+ C0 |
end end max ik %% %Êä³ö½á¹û fprintf('\nConverged in %.2f seconds', et); fprintf('\nObjective Function Value = %.2f $/hr', F); fprintf('\n================================================================================'); fprintf('\n| Bus Data |'); fprintf('\n================================================================================'); fprintf('\n Bus Voltage Generation Load '); fprintf(' Lambda($/MVA-hr)'); fprintf('\n # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)'); fprintf(' P Q '); fprintf('\n----- ------- -------- -------- -------- -------- --------'); fprintf(' ------- -------'); ' j5 K$ a6 t8 ]' h
for i = 1:30 fprintf('\n%5d%7.3f%9.3f', i,X(i+12),X(i+42)*180/pi);
% {3 j0 h7 k) I8 [& j: Mif (i<=6)
fprintf('%10.2f%10.2f', X(i)*baseMVA, X(i+6)*baseMVA);
% d. X1 m) w3 e) Xelse
fprintf(' - - '); 9 r+ Q' U8 b# L- R y
end fprintf('%10.2f %9.2f', bus(i, 3) , bus(i, 4) ); fprintf('%9.3f %9.3f', Lam(i),Lam(i+30));
. H' {; ?% d+ U( U! R I* qif (i==30)
fprintf('\n -------- -------- -------- --------'); fprintf('\n Total: %9.2f %9.2f',(X(1)+X(2)+X(3)+X(4)+X(5)+X(6))*baseMVA,(X(7)+X(8)+X(9)+X(10)+X(11)+X(12))*baseMVA) fprintf('\n');
: C4 I9 s: E# H% h9 s+ Xend
' |" w) p: q1 |+ b& `% d6 ^
end
: {% h8 G9 m6 v" U" X( A0 i6 z%%
%%Êä³öÇúÏßÄâºÏmain iterNum=[1:ik]'; %axis([0,ik+1,min,max]); hold on; f = fit(iterNum,errArr,'spline'); f=feval(f,iterNum); plot(iterNum,errArr,'o',iterNum,f,'-'); end |