ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/& w" Z3 w0 ]; Q4 B
ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/2 p0 j" c5 D. L
------------------------------------------------------------------------------------------------------------------------------------ 9 d6 R& w& p% q8 _1 mYou lose, fella. The EMTP logic has detected an error condition, and is now going to terminate program execution. The following! X) s; o; E( s/ \
message summarizes the circumstances leading to this situation. Where an otherwise-unidentified data card is referred to, or where& [% b! x( x5 R* s$ I# b# p: G/ E
the "last" card is mentioned, it is the most recently read card of the input data that is meant. The 80-column image of this card $ I k% l4 u3 U6 v- o- Bis generally the last one printed out prior to this termination message. But possibly this last-read card has not yet been& m$ v/ g( H! F7 X; [' o
displayed, so a copy follows: 0 M4 G8 A, P* T" \7 Q5 [7 k " "4 J0 |+ l, H& _/ y- u
KILL code number Overlay number Nearby statement number % c$ q" A4 Y( y 212 18 3522 0 ~5 ~9 p# [" h) F+ c8 pKILL = 212. A Newton solution for 1 coupled nonlinear elements has failed to converge within the iteration limit MAXZNO = 50. " M7 P+ ? o$ c* t" l# h! SThe current residual is 1.24294193E+04, which exceeds the sloppy convergence tolerance EPSTOP = 1.00000000E-01. The first of0 x9 G7 K' o4 t# N) I. P
the coupled, true, nonlinear elements (in order of data input) is located in row 1 of the nonlinear element table, and it 6 u7 N3 ~& s( c$ T$ q- W- Pconnects node "X0001A" with node "B ". The final coupled element is in row 1, and the matrix rank is 1. Finally, the: }3 `! E% }9 u# Z5 E1 ]
simulation time is T = 4.05000000E-07. Possible corrective actions include a decrease in the time-step size DELTAT, an increase: Y- H3 k! T4 _( a
in the iteration limit MAXZNO, an increase in the divergence tolerance EPSTOP, and artificial splitting of the subnetwork in8 g8 O1 z$ B' h! f$ T4 \' c
question by distributed-parameter lines (to reduce the number of coupled elements). In addition, it is possible for the user to- @: J7 ~! ~" q! b# y- H6 V
make a solution impossible by unrealistically limiting the Newton corrections. The user should remember that there can be no ! G4 N; i! q& ^1 _- y- hsolution if his bound on arrester voltage is less than the true solution voltage. The bound has a default value of 1.5 per unit, : @, P5 ?( }5 O8 w& u& ~0 @+ H- calthough it can be changed by a"ZINC OXIDE" special request (columns 57-64, variable ZLIN(2)).2 E/ U1 V1 }3 q8 D- P
------------------------------------------------------------------------------------------------------------------------------------ h2 O6 A; O! i' K9 H& ]' s" D
ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ # @0 g) ~6 t* \$ h* WERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/7 a! p3 O$ J0 E+ K
------------------------------------------------------------------------------------------------------------------------------------ 6 x8 j k6 U2 t! y * M8 D$ T) L, }( [" o% ^( TActual List Sizes for the preceding solution follow. 01-Nov-10 17:02:18& @# `+ j/ d5 E( J4 K; I
Size 1-10: 56 78 128 7 276 1 73 13840 1 3 - \. q' {: r4 b" n, U Size 11-20: 0 6 -9999 -9999 -9999 0 0 0 23 35900 P$ i7 L0 O P5 N. g
Size 21-30: 126 375 253 1 -9999 25 -9999 -9999 -9999 0; e3 {0 n4 h* D7 f$ B
Seconds for overlays 1-5 : 0.047 0.000 0.047 -- (CP: Wait; Real) $ W2 V1 e8 O) @; v$ S+ ASeconds for overlays 6-11 : 0.000 0.000 0.000 * ` f! `- O: P2 `" CSeconds for overlays 12-15 : 0.016 0.000 0.016& c, `9 a. V/ k& Q4 t2 K. a
Seconds for time-step loop : 0.000 0.000 0.000 1 t8 \: v/ i" W. oSeconds after DELTAT-loop : 0.000 0.000 0.000 + S2 r$ a+ p* [3 l --------------------------- 1 l2 t; |* I8 n S. v) f Totals : 0.063 0.000 0.063