Partial Description of the IEEE Common Data Format for the + m' u2 h% @$ @# R6 E' w9 Z
Exchange of Solved Load Flow Data+ g+ y0 ^6 a1 D0 a
The complete description can be found in the paper "Common Data 7 j3 ?5 Q6 i8 Q4 @. x9 D+ H7 F' rFormat for the Exchange of Solved Load Flow Data", Working Group on a - s" ~9 C0 p9 x, A5 ]! ^4 OCommon Format for the Exchange of Solved Load Flow Data, _IEEE/ a$ J. S6 K9 T( A
Transactions on Power Apparatus and Systems_, Vol. PAS-92, No. 6,% u6 c' S5 K$ o1 X6 S/ z# L( Q
November/December 1973, pp. 1916-1925.6 C- S# t$ L+ j- ?3 ~, C
The data file has lines of up to 128 characters. The lines are grouped/ o% \% x! D2 J c {* F4 n
into sections with section headers. Data items are entered in specific$ D( S. e" A* J$ R5 {
columns. No blank items are allowed, enter zeros instead. Floating point 6 D5 Z4 x# Z# `3 t6 B% ?items should have explicit decimal point. No implicit decimal points, ~) X! k' u, D) X
are used. % |7 g t9 Q, t% A5 o# e! KData type codes: A - Alphanumeric (no special characters) 3 C% B- E( b2 i0 S% I) E I - Integer ! o7 \% H1 T" @. g7 x5 }0 ~% g2 f F - Floating point9 o( i" w) {1 P. ^! q
* - Mandatory item # A1 U% F7 w/ X" y' ]" J' ^Title Data 8 R! B+ }9 ?/ c; t: f3 ]! C2 Q( N========== # f8 {+ g+ _: w7 f L3 k, XFirst card in file." r8 Z" x) S1 ?# e
Columns 2- 9 Date, in format DD/MM/YY with leading zeros. If no date. p/ g! h9 N" s1 G- S# a
provided, use 0b/0b/0b where b is blank. * O+ k* U8 z/ w/ x0 Y, v" b. g9 ?Columns 11-30 Originator's name (A)! p2 {. \7 T, c" N+ g3 h% s% ]( {
Columns 32-37 MVA Base (F*) 5 ^1 E( Y7 \7 z: f2 ^6 c9 CColumns 39-42 Year (I)( y' Z p O: k, u3 e! v2 M* {3 V
Column 44 Season (S - Summer, W - Winter) 0 [ Y+ ], A4 o$ f3 B9 e: y" O" s, iColumn 46-73 Case identification (A): [# d) V S" K) o; r. {
Bus Data * # ?6 ]+ q5 Z$ o6 M========== 4 i0 T2 p5 d3 s3 p. a2 Z# USection start card *: S: D' p$ j) Y# ~* G
--------------------- ; w; j: \+ C0 A/ ?3 {0 |$ oColumns 1-16 BUS DATA FOLLOWS (not clear that any more than BUS in4 ?) ^; h( h9 d) E
1-3 is significant) *6 b/ O" s1 ^& P4 ]6 G+ b( t
Columns ?- ? NNNNN ITEMS (column not clear, I would not count on this)" n% j! h" E9 c$ F6 A6 t" t
Bus data cards *:! t9 P- ^7 w# n1 Z# D* `
----------------- + C7 ?; Q H$ W* DColumns 1- 4 Bus number (I) *( m1 b' }1 D3 W, b
Columns 7-17 Name (A) (left justify) * 5 L# a0 `3 N- Y' ]* }6 ?Columns 19-20 Load flow area number (I) Don't use zero! * ! R8 b7 r4 |( ^1 WColumns 21-23 Loss zone number (I)( N" p y- m% P" {" ^% M
Columns 25-26 Type (I) *7 j+ _9 C* x1 z I
0 - Unregulated (load, PQ)" h5 @4 M! V. d9 M/ N3 `" F& O
1 - Hold MVAR generation within voltage limits, (PQ) 7 e0 h5 S* Y7 k. B6 [; |3 L3 `* ? 2 - Hold voltage within VAR limits (gen, PV)' e; u& k: o- I5 o6 R$ @
3 - Hold voltage and angle (swing, V-Theta) (must always 7 @7 a* o9 B: @8 K$ W" k have one)6 s4 C0 A G4 E
Columns 28-33 Final voltage, p.u. (F) * 5 C0 t& U/ J8 D- w, ~* cColumns 34-40 Final angle, degrees (F) *+ m+ B9 g' B3 @4 R
Columns 41-49 Load MW (F) *' r! ?1 K' u2 D' W0 R" W5 V# F
Columns 50-59 Load MVAR (F) * , N* X% D7 h" U I9 j0 oColumns 60-67 Generation MW (F) * ) \7 x9 r0 B+ f2 I, h* _- sColumns 68-75 Generation MVAR (F) * : W' z1 |5 z/ N8 y4 R( ^ s9 EColumns 77-83 Base KV (F)0 R0 \& E9 i3 ?+ N
Columns 85-90 Desired volts (pu) (F) (This is desired remote voltage if2 N: U& |, i+ B1 u. @& W7 p: l
this bus is controlling another bus.5 y$ s' r: ^. C
Columns 91-98 Maximum MVAR or voltage limit (F) # v5 U6 [2 Q* E6 U6 O8 cColumns 99-106 Minimum MVAR or voltage limit (F) " v9 q' C. ]5 j yColumns 107-114 Shunt conductance G (per unit) (F) *0 t" n. e1 ]& k* ~ d5 e T
Columns 115-122 Shunt susceptance B (per unit) (F) *5 a( `6 p6 L8 {; l' x, y, v
Columns 124-127 Remote controlled bus number7 y7 C) ]6 a. C' Y
Section end card:1 I4 r- j1 m. m# B3 ~& s
----------------- & S, D4 y* ~9 T2 r2 XColumns 1- 4 -9998 O: C, l; f8 t0 U; Q
Branch Data *8 l" u' O+ Y- Q% j5 V$ g) b7 b& G+ X5 x
============= $ ?4 S( d( [. tSection start card *: / B" v8 B# X8 y# j---------------------# R* d+ \0 ~! n; c, Z
Columns 1-16 BRANCH DATA FOLLOWS (not clear that any more than BRANCH & N4 k0 {& _8 N is significant) * 6 y, J# p% E- U) A- G5 x; g3 ~Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this). V8 n5 \- @* X
Branch data cards *: . B! z+ y$ n4 L: D- O' T1 a--------------------) y+ Y9 ~# f. s5 }
Columns 1- 4 Tap bus number (I) *3 k# F* }/ C0 m
For transformers or phase shifters, the side of the model% L8 Y0 |4 w! {0 I! w5 O: [" K
the non-unity tap is on : V# r' {4 ?6 b- b- S6 Q, ?Columns 6- 9 Z bus number (I) * 4 n: i% Y$ L; E& o For transformers and phase shifters, the side of the model % W0 }& K1 r) C& y0 {; d7 n the device impedance is on.! F! v: b% p+ L) K
Columns 11-12 Load flow area (I) 7 F/ r4 J5 f/ R, g7 RColumns 13-14 Loss zone (I)7 A" D, H' g8 b5 l
Column 17 Circuit (I) * (Use 1 for single lines) " d$ q+ ~3 ^7 O( o3 T- hColumn 19 Type (I) *! B" ^* V2 X. Y/ I8 E
0 - Transmission line ( ]" E( Q( h. ^4 f7 e 1 - Fixed tap9 z6 k) h7 [* ~& \" z) J( y
2 - Variable tap for voltage control (TCUL, LTC)/ p/ H: K7 |2 P$ ?: D
3 - Variable tap (turns ratio) for MVAR control3 h. \8 i0 N$ B' `. O: V& E
4 - Variable phase angle for MW control (phase shifter)5 ]0 U# s) `$ W
Columns 20-29 Branch resistance R, per unit (F) *% D) i* E, w- v; u9 Y3 t
Columns 30-40 Branch reactance X, per unit (F) * No zero impedance lines 1 y1 {6 k6 G3 _6 B1 r$ v2 r8 B" `& yColumns 41-50 Line charging B, per unit (F) * (total line charging, +B) 3 B7 E( T' a# O% B( b+ o& ]4 AColumns 51-55 Line MVA rating No 1 (I) Left justify!3 e% p: G4 s X* f, r( A6 ?
Columns 57-61 Line MVA rating No 2 (I) Left justify!/ u6 ^- v/ A4 E4 @5 w
Columns 63-67 Line MVA rating No 3 (I) Left justify! ( Z4 x" w7 e, r9 g) L6 @Columns 69-72 Control bus number 7 V' V# Q7 t. S* T3 Z5 O UColumn 74 Side (I) Z0 a1 f: v$ r3 g4 `- e1 V! @ 0 - Controlled bus is one of the terminals/ B, P1 e. U, D& D
1 - Controlled bus is near the tap side* ^" C5 [& [+ R) u4 s9 I( G! k5 [
2 - Controlled bus is near the impedance side (Z bus) * E; A6 w* f2 U8 [. L- J8 D: |( `, qColumns 77-82 Transformer final turns ratio (F)+ `. c, Z4 c/ |) e& A, O x
Columns 84-90 Transformer (phase shifter) final angle (F) : D" z" f2 c5 d7 uColumns 91-97 Minimum tap or phase shift (F)% [" n4 U1 p1 O3 b# T
Columns 98-104 Maximum tap or phase shift (F)- X+ v, |! l I
Columns 106-111 Step size (F) . y$ _; `. m- H& D2 M- }Columns 113-119 Minimum voltage, MVAR or MW limit (F): k0 A$ m) Z4 q$ l" `2 h# h, f4 s
Columns 120-126 Maximum voltage, MVAR or MW limit (F) A4 o5 h. Z7 o
Section end card:+ K+ p- {2 O8 f# y/ y8 T7 ?& O6 g
-----------------* E* l7 x+ L/ A5 O" {
Columns 1- 4 -999$ f' }3 F% i% P a2 X8 p
Loss Zone Data& G' j" f: `- H2 S
==============6 V7 w. V/ q: Y+ i- R. N4 Z
Section start card ( L0 h5 H' r& o' V* a5 h------------------9 o+ |: | ]5 B' X8 c8 f
Columns 1-16 LOSS ZONES FOLLOWS (not clear that any more than LOSS5 Y* |' q7 g3 A: ^. T& K
is significant)- Q0 \3 J% L3 g( Y B8 G
Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) $ w/ U/ ^* U* M6 z7 k3 G2 TLoss Zone Cards: ' |1 Q/ [ u3 M2 d$ r U4 R----------------/ N7 B$ i# E+ ]
Columns 1- 3 Loss zone number (I) ) F) z2 R, ^6 q- s, O* ZColumns 5-16 Loss zone name (A) # `$ c$ l8 p& C( @% \Section end card: R& t9 M* u! c* R----------------- 8 e) c" v+ J$ |* O+ A [- h- eColumns 1- 3 -99 # `3 @% \ i$ v9 \, ^3 UInterchange Data *4 Q% W0 y: m( N& f" O* V
==================- N# b: x: f6 @ {) F
Section start card1 k4 T6 V# M* L( n2 t& f- f
------------------ - ?! P: m1 b3 T0 s' l3 ~: }Columns 1-16 INTERCHANGE DATA FOLLOWS (not clear that any more than 4 I$ S3 |) o9 p& d# Q first word is significant). 8 a/ l) d6 ^. l6 kColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) $ j6 A2 U. j" v/ @Interchange Data Cards *:& x; C3 G5 k& {+ p) @! j$ |& \
------------------------- , }9 X* X4 s7 wColumns 1- 2 Area number (I) no zeros! * ! ~4 g; Q5 a6 s4 F2 L1 \* _( |Columns 4- 7 Interchange slack bus number (I) * ( t4 q2 ~$ |2 _# `Columns 9-20 Alternate swing bus name (A)! [/ S/ F7 d4 D; N$ N
Columns 21-28 Area interchange export, MW (F) (+ = out) * 9 ` ]3 W [1 J5 N; ]! T. B* aColumns 30-35 Area interchange tolerance, MW (F) *' L- ~4 d0 M1 {7 ?# v& ?( w3 V
Columns 38-43 Area code (abbreviated name) (A) *" V) i. w4 ]3 A5 T4 f8 ]( f# b2 F
Columns 46-75 Area name (A)* H' Z5 X0 I/ H# Q$ T. C* a
Section end card:) r7 A& l% n1 a7 {: H2 r
----------------- : U4 k& K- r3 k. t: \+ m1 AColumns 1- 2 -9 6 ^$ F: C* M8 h- o8 H* fTie Line Data 7 L( _/ \# ^4 c0 z=============( S, h. N7 M& {; S( p
Section start card! j' o( ^& A7 u5 |. W7 h2 V
------------------+ z2 z6 h. o( j; h) D, D
Columns 1-16 TIE LINES FOLLOW (not clear that any more than TIE 9 w! ?' h5 b& T1 M7 d0 j is significant): r. q {# Z5 M* L' T6 {' f5 W
Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) $ Z8 {, x6 R+ `' x3 }* yTie Line Cards: @3 E4 k5 i5 u' c1 L+ S3 P
--------------- * B% O& S4 d/ C7 JColumns 1- 4 Metered bus number (I) ( B. d3 Q2 l5 O% z6 [Columns 7-8 Metered area number (I) 4 {& y9 p" N% s) z3 I) S" ?Columns 11-14 Non-metered bus number (I) ) N0 h; Z: R* g" y% x6 o2 t* zColumns 17-18 Non-metered area number (I) 5 B9 _6 J+ t1 K) D% ?Column 21 Circuit number , _4 @& }, [$ B4 nSection end card: . M& w& O- `/ F9 j" n. p----------------- / m( n% b5 S8 Z R' u) }Columns 1- 3 -999 " V4 K. ?: j) T/ _) M- YEND OF DATA 9 { d* L& ^1 T# z- Y5 \7 F. G/ l " e8 L2 [' W, }- yPSAP File Format ' D: R4 m2 S; _May 20, 1993 5 Y- {6 d1 V/ O3 p. D- f1 jThe PECO PSAP File Format is fully described in the _PJM Power System. f7 o, d4 d. w
Analysis Package Use's Guide_, available from the Philadelphia " o3 m' M' a! I8 zElectric Company. The following is a rough description of the$ H5 w1 l* m6 E3 S( u4 n( f9 ` D$ \' c
most important parts of the format. ( b' [4 j! |& B h* x3 S3 ], x: D Y0 RA PSAP data file is divided into sections by code cards. The code is " [4 S* Y% r9 {. `' s, @7 k% ~in the first three columns. There are something like 60 codes, of * ?* g9 }! I% Bwhich only four are described in this document. - }8 z" w1 j% T! R4 F7 ?The 1 code indicates that the next card is the case title. Only one # u8 t/ X. B+ | P; k- c! h+ v# ttitle is allowed per case., B6 `% }7 V# u
The 4 card indicates that line data follows. The line data ends with1 v6 L/ I! C5 e1 {0 U h
a 9999 card./ A, W6 U- ?' f9 ^1 N- s/ F5 q1 {$ ^
The 5 card indicates that bus data follows. The bus data ends with9 v* o2 Z) R1 T# m" t
a 9999 card. + l, `" W3 m% c2 g0 N! x: `The 15 card indicates that area interchange data follows. The data ends with) a& v/ V( p) `% B) ?+ u! ^ ?
a 9999 card. / t$ B0 s7 u) p$ A9 d; ]Line Data Card (Code 4 cards) ) v$ Q2 e7 D- ?=============================, q' t# o$ K0 V; x
Cols Data 1 |4 N' t3 o6 I1 D: I1-4 From bus number 1 k4 A3 I/ t4 f6 Change code (blank in 4 section) 6 c8 ]$ V' p- O# w# F% K) }+ [; ^7 'C' if second card present for same line. Used for transformers. $ S* t/ W- Q- O9-12 To bus number : Y1 N) [. D: t9 t7 s& E5 G" ~14 Circuit number (blank in 4 section) P! b& x6 v3 V* `- d; W, E3 q
16 'T' or 'F' - Load flow area of bus at this end of line gets losses. 5 e7 W) F7 i; H; y9 l0 @18-23 Line resistance in percent of base. (NOT per unit.) 8 ?/ }1 L% s0 Q, q, C (percent = 100 x per unit) Two default decimal places. . U3 ^! S j3 p" \; J' v9 a24-29 Line reactance, in percent. Two default decimal places.+ o! D& T. C% I% h! h# p4 P
30-35 Line charging MVAR (total). Three default decimal places.; p+ T& }* t! Y2 J
36-40 Transformer tap (per unit turns ratio). Three default decimal ; r6 {& u; ?) b places, 1000 = 1.000.4 f8 n4 R% J5 u% F$ {8 a
41-45 Min tap, for OLTC. Three default decimal places.) U; S5 n; i4 ^3 `1 _
46-50 Max tap, for OLTC. Three default decimal places. , n; P% f1 R! d* `51-55 Phase shift angle, for OL phase shifter. Two default decimal places.# l; v/ u7 z! v8 D8 m
56-60 Remote voltage control bus number. Negative if lower tap increases" d1 |* L- G7 Z6 n* R# o) o7 d9 K2 u
voltage of this bus.5 N! t! o0 ~' e0 D0 _, X
61-64 Normal MVA rating 8 G2 s' R+ g/ e8 T8 @! I65-68 Emergency MVA rating: n# _, U+ S( b# J0 i0 n6 Q# H/ t
69-72 MVA Base. Default value 100 MVA if blank.! g7 N' g5 |$ s0 M' F) v
Second Line Card (follows 'C' in first card) 5 H; y& L/ A+ P============================================. A5 ?' |; _; ^8 y$ Y
1-17 Same as first card, except no 'C'. Can be left blank. ! Q0 B8 O9 V+ M35-40 Desired MVAR flow or Min voltage setpoint for OLTC. ! q) ?# k) H- J2 \! u; R. R41-45 Min phase shifter degrees. Two default decimal places. + @+ L! {& U" H% h+ z; C46-50 Max phase shifter degrees. Two default decimal places. 2 U9 v- h$ }+ P+ K$ c- V' G51-55 Desired MW flow for phase shifter.4 F$ @/ r, f) s- X+ B) Q5 o4 N! E V
57-60 Controlled line from bus. - k# @- N2 F o9 G) r* ^62-65 Controlled line to bus. , G. a% s$ v# M/ a0 ^/ E$ m2 P; n67-70 Available taps (number of taps) 6 l/ Z p3 m# h3 [71-75 Maximum voltage setpoint. Three default decimal places. " p& B& O+ ~( fBus Cards (Code 5 cards)7 s8 X1 ?" {5 J: [
======================== 2 P0 h( l' L8 d1 C& L- B1-4 Bus number* O Z. u' Y3 P! t1 D
6 Change code (blank in 5 section) 2 L# \1 a0 i1 ~, v7 Continue code (blank in 5 section) 9 {( X& ^/ V1 Z5 w8 Regulated bus code: 9 D) a9 Z$ v) q* l Blank - load (PQ) bus $ H: h; i* q+ Z4 V# D R% N 1 - gen (PV) bus ) u8 B$ f6 H+ f" j: M' @* ^" K 2 - swing (V-Theta) bus3 b S! D" Z: R! V9 a [; S# |
10-21 Name- g/ c. _5 j- `2 S Q
23-26 Bus voltage (control setpoint or solved value). ; I6 z5 e0 Y, n* F" S' L Three default decimal places. 9 Z6 K" F0 G9 y+ E2 R& K27-30 Bus angle4 R5 O3 h! q0 k' n1 d
31-35 Generation MW$ e' L/ b% C. k2 T
36-40 Generation MVAR (from solution)/ h. @5 G- y8 ~0 F, S1 r* |
41-45 Generation MVAR low limit o" c8 m5 X; L4 u! U/ n7 ^3 k46-50 Generation MVAR high limit 9 p! h* y1 c: v( ~: \1 ~9 ]51-55 Bus at which generation controls voltage+ d& j; W' ], J. O0 j9 C9 h- ]
56-60 Load MW6 l4 W& Y8 r: u* V
61-65 Load MVAR0 X. I, f- T7 a3 n" r
66-70 Shunt MVAR. Reactors are minus. $ E+ F2 R2 n/ Z) M' ?) [' `% \$ F71-72 Load flow area. (Used for area interchange and losses).. s- }9 |7 F4 K
Area Interchange Cards (Code 15 cards): y* P, m0 V, {2 Y7 C, o5 _; @. e
====================================== L ~6 c9 H2 q2 _* _3-4 Load flow area number. J. ]! { |: L0 S/ ~" C
5-8 Swing bus for area interchange. Adjusts generation at this bus: l: t+ z h% N4 j, |9 u
to meet area interchange requirement. ! ^2 I7 O" r( U% e9-14 Area exports, MW. (+ = out of area) 8 [, }2 {4 N: r9 m6 O+ j$ T6 ^15-19 Area Interchange tolerance, MW 6 O; J/ R2 A8 o' p0 |20-55 Area name6 x. e+ v$ w4 q1 ?+ V# w4 V3 m% F
56-60 Area load (usually left blank) $ V( g$ L; H8 j9 q. Y1 u61-65 Area losses (usually left blank) , k4 R2 f" ?) P: @6 g0 f1 r/ O' b9 q/ L ^! y
$ D' O, M! _) w, m2 a% t6 ~1 H2 d* N" Q% k( J! U* ]7 c
Description of the PTI Load Flow Data Format 2 }1 u& O' K2 L# ?' @' N============================================4 U! G: Q+ o3 A9 p& w3 [' }
Note that PTI reserves the right to change the format at any time.% Z; a2 x( R' y8 e: A
For use with the IEEE 300 bus test case in PTI format. . ]7 |% ?: X# p# v+ }, ACase Identification Data 2 ]" j4 i9 X" x* t3 s9 z========================, ` A- x3 v1 g' n# x% }& O( J1 C+ ~7 F
First record: IC,SBASE: i# ~$ v5 @: x& y; H
IC - 0 for base case, 1 for change data to be added5 c2 M2 a; P$ k8 V/ s
SBASE - System MVA base 3 r1 v# h) P8 o9 y# _+ E& i, LRecords 2 and 3 - two lines of heading, up to 60 characters per line : @4 x, W# c( t, |( t/ {Bus Data 5 f8 c' O6 z0 U6 u6 e q: V========- u* F; q8 a3 ?. @& V1 k
Bus data records, terminated by a record with a bus number of zero. ) H9 M8 ]* Y8 j% B/ L' ^I,IDE,PL,QL,GL,BL,IA,VM,VA,'NAME',BASKL,ZONE ( h+ Z% {- z; O. P5 Y I - Bus number (1 to 29997)/ ]6 i/ c2 w9 ] T
IDE - Bus type j s% q% g1 T% r U3 [7 {* {
1 - Load bus (no generation)5 D. X; O9 a; O) l# Y# M
2 - Generator or plant bus% f4 v/ J& O6 x) a2 A0 o3 m3 g4 u9 M. K
3 - Swing bus7 S% W+ Q9 B6 O% z5 }; ^* \) w
4 - Islolated bus. x2 h1 j- o7 C3 t
PL - Load MW7 _4 u! f0 |% k# S& q/ ~& @/ Y0 M. j
QL - Load MVAR 3 Q- h- b7 ~8 O6 j) y- ^% d7 Z GL - Shunt conductance, MW at 1.0 per unit voltage! M$ w& N9 }4 E
BL - Shunt susceptance, MVAR at 1.0 per unit voltage. (- = reactor). L; E) X g' G( V, r
IA - Area number, 1-100, W Q- j6 M$ o* c5 Q0 M
VM - Voltage magnitude, per unit3 x$ ?4 [3 h% ~8 \
VA - Voltage angle, degrees ( U2 `# N; ^0 M( B5 y' W NAME - Bus name, 8 characters, must be enclosed in quotes / m( B! ?! y/ _2 K BASKV - Base voltage, KV2 p7 X( L! a7 p! ^! b+ g; H3 X: K7 X
ZONE - Loss zone, 1-999: p# [2 J$ r4 ?$ S- ~ [7 V/ m
Generator Data; C! P; l, o) ?% s9 N# I% C9 O% n
==============+ e2 ~* q; Y$ R) d7 R+ w3 `
Generator data records, terminated by a generator with an index of zero.6 |- ~$ e3 R, J$ O) Z" \
I,ID,PG,QG,QT,QB,VS,IREG,MBASE,ZR,ZX,RT,XT,GTAP,STAT,RMPCT,PT,PB) d1 `, m6 V: [+ ~
I - Bus number* u$ c$ Q4 k' h9 ]' y
ID - Machine identifier (0-9, A-Z) - |/ T- ? x, H# y2 e% @4 zPG - MW output . h/ h5 `8 i& p& E0 {" C! }" W' @QG - MVAR output 3 F" V7 T w4 y$ m8 t aQT - Max MVAR& f6 a* r( |7 i) V+ }4 L
QB - Min MVAR & \ d' }3 n8 x. z: DVS - Voltage setpoint7 z3 ?4 ~7 M/ ~4 |
IREG - Remote controlled bus index (must be type 1), zero to control own " z2 T- F4 K, F* v X voltage, and must be zero for gen at swing bus+ `4 A; \7 Q& C$ Y$ n: k0 Z; G) n
MBASE - Total MVA base of this machine (or machines), defaults to system , P- t; a' O/ h9 Z MVA base.* ]1 |; }$ a9 @1 B% }! c: N1 @3 t
ZR,ZX - Machine impedance, pu on MBASE) c. u8 U, ^# Q
RT,XT - Step up transformer impedance, p.u. on MBASE4 D2 X; }# ], b3 q B
GTAP - Step up transformer off nominal turns ratio. m5 }+ M8 O; T/ z1 C! T
STAT - Machine status, 1 in service, 0 out of service( ?/ H0 G7 O! {& X) w
RMPCT - Percent of total VARS required to hold voltage at bus IREG ( m$ M7 p* U- Z to come from bus I - for remote buses controlled by several generators! N& G3 B4 O* _" [
PT - Max MW / c2 E" Z/ M$ S6 S# }PB - Min MW 9 B, o% e0 h2 i. l8 a, pBranch Data7 f8 Z+ |3 d4 ~( n) z
===========* `1 B" e' m! _3 F. j% O
Branch records, ending with a record with from bus of zero 8 i( D& ^( Y0 Y" W3 `8 S/ xI,J,CKT,R,X,B,RATEA,RATEB,RATEC,RATIO,ANGLE,GI,BI,GJ,BJ,ST 4 ?; k+ C; `* B2 h: T, DI - From bus number 3 |4 p" N( q9 D5 H" m: k3 _J - To bus number' l0 j) C# J1 x; b' n B# e
CKT - Circuit identifier (two character) not clear if integer or alpha; m6 {2 O, C6 A; ^5 a/ n4 ?
R - Resistance, per unit+ U6 j0 N# f6 m" E: A! g8 O+ c# t* u
X - Reactance, per unit* V" K$ O; c3 y# r+ i# f- @
B - Total line charging, per unit" U- L' n% r# N% |$ n `
RATEA - MVA rating A9 q$ h/ b0 n5 f6 ]+ R
RATEB, RATEC - Higher MVA ratings1 j5 u* T# _; w% r
RATIO - Transformer off nominal turns ratio b; F- K9 z, c* ?8 ]
ANGLE - Transformer phase shift angle( ]. f- n+ W, |1 F# _3 N5 s
GI,BI - Line shunt complex admittance for shunt at from end (I) bus, pu. 1 Z, B/ h2 a7 u" FGJ,BJ - Line shunt complex admittance for shunt at to end (J) bus, pu. % {$ v9 O: r, i/ ^7 c5 AST - Initial branch status, 1 - in service, 0 - out of service& `3 C7 c: [9 T/ ^. x5 _
Transformer Adjustment Data - @3 c, a0 r. h. }+ C- d! R2 t=========================== + u0 @/ C! ~3 O9 e+ QEnds with record with from bus of zero # ~1 Z$ U5 e3 ? F* yI,J,CKT,ICONT,RMA,RMI,VMA,VMI,STEP,TABLE 6 j: Q) g8 x% jI - From bus number ! t0 O7 B: A! Q2 q' x IJ - To bus number 4 G- c. Z; e2 P6 t+ Q2 KCKT - Circuit number 0 _# Y9 K/ m' J4 UICONT - Number of bus to control. If different from I or J, sign of ICONT* Y2 A+ U3 C# a' M5 D/ p7 r
determines control. Positive sign, close to impedance (untapped) bus3 b" U3 o1 {2 G- P2 ?
of transformer. Negative sign, opposite.$ m: c* ], w! Z1 Y( n) m
RMA - Upper limit of turns ratio or phase shift. ]9 T7 p. U# M [) n! f6 o; r" s
RMI - Lower limit of turns ratio or phase shift 5 j! ~7 H5 n+ IVMA - Upper limit of controlled volts, MW or MVAR& {1 z3 [, ^# H3 I1 j# g5 I
VMI - Lower limit of controlled volts, MW or MVAR - U9 U" A% [( T! ESTEP - Turns ratio step increment 0 {1 A4 e6 p' w6 ~- \# l7 ~TABLE - Zero, or number of a transformer impedance correction table 1-5 " _) P) ~; z9 y7 @. n& ^% pArea Interchange Data- L% T# ~9 {2 i! }" ?* J" L
===================== ! t6 X* N! {; G+ k3 R/ bEnds with I of zero ' J: p) q; p) }% x' o( r+ hI,ISW,PDES,PTOL,'ARNAM' 2 l$ _: g& X' Q8 J6 q9 P/ BI - Area number (1-100)# e! P1 x! p% @" z
ISW - Area interchange slack bus number % }% m- M& a. T& w! B: gPDES - Desired net interchange, MW + = out. * ]' n) _. ?1 RPTOL - Area interchange tolerance, MW " l! L/ h5 O6 {2 Q* O' pARNAM - Area name, 8 characters, enclosed in single quotes. & Y9 P5 \9 W( E) YDC Line Data; j& X/ J+ t# E6 N0 _1 D: [
============ 0 D# v) i! |% A8 k; P6 ~& t: ?Ends with I of zero 0 t# P7 d' j7 @+ Q9 I9 s! q L3 WEach DC line has three consecutive records( c; _/ f' g+ I$ q5 C @
I,MDC,RDC,SETVL,VSCHD,VCMOD,RCOMP,DELTI,METER0 v2 J: G5 j7 A$ r% T
IPR,NBR,ALFMAX,ALFMN,RCR,XCR,EBASR,TRR,TAPR,TPMXR,TPMNR,TSTPR9 P- E7 t6 p+ a- e S' h/ L' }
IPI,NBI,GAMMX,GAMMN,RCI,XCI,EBASI,TRI,TAPI,TPMXI,TPMNI,TSTPI/ T/ [+ U9 P" A1 R: A# Q+ E. c& Q9 u
I - DC Line number/ i% X" m4 i) {6 I; z5 ]# `
MDC - Control mode 0 - blocked 1 - power 2 - current : @, M+ |3 R4 t# h3 ]% R Z# ZRDC - Resistance, ohms0 Q a5 I+ J$ h* w- B
SETVL - Current or power demand! Q, Z7 N( h0 I" d0 P; J
VSCHD - Scheduled compunded DC voltage, KV 1 G! |/ \4 c2 _8 X j1 n0 r8 j6 IVCMOD - Mode switch DC voltage, KV, switch to current control mode below this 1 ?) M, X+ _! d4 W9 L8 { KRCOMP - Compounding resistance, ohms 1 I6 Z; s; w1 z) G5 `DELTI - Current margin, per unit of desired current ' L- S5 l- v" OMETER - Metered end code, R - rectifier I - Inverter * h }* N2 M& u$ WIPR - Rectifier converter bus number# {) x- t2 m/ H! n- d& I
NBR - Number of birdges is series rectifier3 E( W3 ~# ?. _3 r, ]6 ?
ALFMAX - Maximum rectifier firing angle, degrees 6 g4 T, e9 C6 @ALFMN - Minimum rectifier firing angle, degrees2 @4 y' D4 ]0 Q' w( ` n! m
RCR - Rectifier commutating transformer resistance, per bridge, ohms i f; b& O, A/ X& s9 m4 P
XCR - Rectifier commutating transformer reactance, per bridge, ohms: I6 S# G2 ^, z, j9 ?3 F
EBASR - Rectifier primary base AC volts, KV % p$ u# d3 A' f5 n' V* P1 tTRR - Rectifier transformer ratio 7 w$ k4 F) Q# A# l! |TAPR - Rectifier tap setting9 z, t1 V. }9 `7 x Q
TPMXR - Maximum rectifier tap setting9 I+ K; F8 }3 f" u0 L
TPMNR - Minimum rectifier tap setting! e' i4 { P$ c# i" E4 q
TSTPR - Rectifier tap step 2 Y( @. k' l) g: ]8 V- PThird record contains inverter quantities corresponding to rectifier - {, i8 J. e, E3 ?3 U) o* Nquantities above.+ N0 B+ ?/ A1 s) l; |; O6 ]
Switch Shunt Data* `. ^& U' n; `% I# T8 X- `
================= 3 |8 }2 \7 H' |+ q) D% fEnds with I = 0. 8 n) N/ k6 T& g4 b, `: XI,MODSW,VSWHI,VSWLO,SWREM,BINIT,N1,B1,N2,B2...N8,B82 J, T7 `4 I. ~" |$ R7 l. f4 F9 F) b
I - Bus number! c0 F; P9 M/ i# ]. n, j
MODSW - Mode 0 - fixed 1 - discrete 2 - continuous + m! }1 q5 n; M$ k( VVSWHI - Desired voltage upper limit, per unit/ B# J; ~3 d/ B* s0 d2 n
VSWLO - Desired voltage lower limit, per unit $ y2 ^5 d0 H3 o0 P" j: {8 eSWREM - Number of remote bus to control. 0 to control own bus. Z; T: ?1 ?' N/ ]) M* P
VDES - Desired voltage setpoint, per unit " x0 ^! ]/ l. P7 HBINIT - Initial switched shunt admittance, MVAR at 1.0 per unit volts5 J" O7 q4 g: N# ^1 l; ^
N1 - Number of steps for block 1, first 0 is end of blocks " T1 [* c7 c8 a1 A3 R& E; [; zB1 - Admittance increment of block 1 in MVAR at 1.0 per unit volts. / _: o4 t3 l6 O. F GN2, B2, etc, as N1, B1