Partial Description of the IEEE Common Data Format for the ! X0 v! Q! q5 H4 C& b: j9 t0 b
Exchange of Solved Load Flow Data . L) h4 A! t" k$ U- DThe complete description can be found in the paper "Common Data % J( u* `& \. m2 W% e0 h3 vFormat for the Exchange of Solved Load Flow Data", Working Group on a/ A. U2 s! q2 |5 n; i1 ^
Common Format for the Exchange of Solved Load Flow Data, _IEEE' N. w+ A+ L# |8 O' t) O/ ]. u
Transactions on Power Apparatus and Systems_, Vol. PAS-92, No. 6,. H1 {: ?8 j% |% K0 k. r( @
November/December 1973, pp. 1916-1925., l; d* F" Z$ |) Y
The data file has lines of up to 128 characters. The lines are grouped 0 ~: t' P/ s- M5 r: h- S0 Ainto sections with section headers. Data items are entered in specific" B1 U4 w' H' U( n, \
columns. No blank items are allowed, enter zeros instead. Floating point5 e( b% T# L0 X, l7 J7 O2 C# c8 F
items should have explicit decimal point. No implicit decimal points % a' a* S3 L: ]. Zare used. # H# E. {2 L* rData type codes: A - Alphanumeric (no special characters) ; g) J( }9 o- h: j8 V, b& s6 a I - Integer - b! E, r' m) n4 V' @1 { F - Floating point& O# M+ g8 I, |/ ?9 i$ X
* - Mandatory item" K0 J1 @. E& Q3 n
Title Data+ ?/ j" t M; i. S6 x0 w) G
========== , h5 {# F& K- `; I% b7 W" wFirst card in file.% _6 g7 N0 N; B* a2 @
Columns 2- 9 Date, in format DD/MM/YY with leading zeros. If no date4 S% g$ i( y9 Q, V# M
provided, use 0b/0b/0b where b is blank./ D9 t# a [8 ~% c3 ]( C
Columns 11-30 Originator's name (A)- _+ }1 L( s2 f8 q3 o4 J& f
Columns 32-37 MVA Base (F*)0 m, A7 [( n8 P9 | I0 O
Columns 39-42 Year (I) 3 b9 S5 b: I% t% C* z/ ~Column 44 Season (S - Summer, W - Winter), C: J5 L7 A( c/ k4 r
Column 46-73 Case identification (A)* b2 I1 j2 x6 K. Q# r& w& A% N
Bus Data * 1 `1 D* o0 P4 @5 O; i. |! U5 }! l==========0 Z( s$ N0 m4 q& t
Section start card *: 1 ?2 j3 x( h# i--------------------- D3 B' M4 H1 m8 [! K% V8 N, H3 S7 {; @
Columns 1-16 BUS DATA FOLLOWS (not clear that any more than BUS in 0 _3 f0 @6 v- Q% B, f 1-3 is significant) * * ^$ p2 B, I. G( d( u" W yColumns ?- ? NNNNN ITEMS (column not clear, I would not count on this) $ \) T% [" i( r9 G! }1 D2 l$ eBus data cards *: 1 b" |' D, T7 {! r6 Q----------------- 8 S* ]' F5 q7 \8 {& ?+ C* JColumns 1- 4 Bus number (I) *# n/ G, m, Y* A9 M7 E* H9 v
Columns 7-17 Name (A) (left justify) * 8 u8 }0 p$ t) l# GColumns 19-20 Load flow area number (I) Don't use zero! ** ~! j1 |% y4 A- u( L
Columns 21-23 Loss zone number (I) ( W# I5 _" d3 IColumns 25-26 Type (I) *; o# e( ]" c& K% b6 _
0 - Unregulated (load, PQ) * M! F& M6 ?. t, s9 g$ @. ~ 1 - Hold MVAR generation within voltage limits, (PQ)# [$ R' z% h+ Q& a" _; k
2 - Hold voltage within VAR limits (gen, PV) 8 b7 G# G; a( m 3 - Hold voltage and angle (swing, V-Theta) (must always ) L7 M4 l9 j/ E j. G) C5 @ have one) ) G, F# W( v9 t7 v# o! g/ hColumns 28-33 Final voltage, p.u. (F) * . B; r2 w4 ~7 K# o$ yColumns 34-40 Final angle, degrees (F) * % n! u+ i! z1 m* T* zColumns 41-49 Load MW (F) * 3 X4 B) W3 H5 `/ D0 A: w3 ^Columns 50-59 Load MVAR (F) *, K6 a4 G. ]9 \. Z
Columns 60-67 Generation MW (F) * # H8 i( I8 |4 B; ?; W, r2 A" g3 R& zColumns 68-75 Generation MVAR (F) *3 O7 Y- B9 M" @+ l6 I& G' H! Q% ]0 a
Columns 77-83 Base KV (F) ( b* y; C& P. e- S/ w( @7 q. `7 GColumns 85-90 Desired volts (pu) (F) (This is desired remote voltage if8 k3 r! K7 t- P5 S9 i( L+ ?6 ], l
this bus is controlling another bus. ) e/ A6 {5 z2 X: `( J; D) ^' kColumns 91-98 Maximum MVAR or voltage limit (F)2 ~4 k- O z6 g' _
Columns 99-106 Minimum MVAR or voltage limit (F) 4 ~6 C; H: x3 [- |: gColumns 107-114 Shunt conductance G (per unit) (F) *& D2 s, i- a+ j% {% R6 }1 n
Columns 115-122 Shunt susceptance B (per unit) (F) *3 O: B3 @) T" z& D5 ~* r& {
Columns 124-127 Remote controlled bus number4 z4 [& F9 p# ?, U, z" J
Section end card: 5 J: X7 s5 \0 W! t; \----------------- # [6 T; h" |8 z. K6 gColumns 1- 4 -9994 [& Z4 A' b7 p# V2 a
Branch Data * - F; I C& L$ T2 }=============8 o8 P- z( |$ ?9 S) B/ _; N
Section start card *: : @2 o$ e2 \2 D% R' Q9 m# r# w--------------------- B9 v; I( ` q* f+ qColumns 1-16 BRANCH DATA FOLLOWS (not clear that any more than BRANCH : J0 H1 A, V' w$ D) g8 c is significant) * & ~/ a- d4 ^3 C8 |& sColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) 6 c2 ~8 C* b+ f% g2 m7 ^Branch data cards *: 7 H* A5 W! g- g6 h-------------------- 8 A7 ~' ~! `& {5 i) I+ t& |Columns 1- 4 Tap bus number (I) * . e$ r7 o8 E+ ` For transformers or phase shifters, the side of the model j: B" n, i3 `2 Q
the non-unity tap is on4 @9 ]( }% X% u
Columns 6- 9 Z bus number (I) * , `" l! B2 P7 O/ o For transformers and phase shifters, the side of the model % D: u+ u6 h2 D$ C: @- d! H5 T the device impedance is on.& H0 O, [/ S. o6 C9 Q( h
Columns 11-12 Load flow area (I) ) c1 U' [7 c/ z8 e( ~, F$ qColumns 13-14 Loss zone (I) , C8 X, S, ~; Z; ^/ iColumn 17 Circuit (I) * (Use 1 for single lines) : v3 i4 h9 I4 o& f2 `4 ^Column 19 Type (I) * & Y) k& J) D8 p2 M 0 - Transmission line Y$ _5 M1 [. ?" \" i, }9 d! w 1 - Fixed tap 2 I. i; w( j3 U& V 2 - Variable tap for voltage control (TCUL, LTC)9 W- B" @; p2 ^
3 - Variable tap (turns ratio) for MVAR control0 m/ F3 t$ C2 }+ J3 @* w& k
4 - Variable phase angle for MW control (phase shifter) " e7 S& p$ a. F8 T# ?Columns 20-29 Branch resistance R, per unit (F) * # u4 F) K& I4 _( d2 O, SColumns 30-40 Branch reactance X, per unit (F) * No zero impedance lines 8 G0 _ a- Y; a* K# eColumns 41-50 Line charging B, per unit (F) * (total line charging, +B) y! {% v9 Z9 G1 J1 D) |& t
Columns 51-55 Line MVA rating No 1 (I) Left justify! $ n9 o5 x1 i3 |+ l% U! J8 Z/ cColumns 57-61 Line MVA rating No 2 (I) Left justify!! C* x) D' s$ V6 b ?" |8 J
Columns 63-67 Line MVA rating No 3 (I) Left justify!9 U: K- H* Y4 r) f. b! _
Columns 69-72 Control bus number% K$ a& b8 P# F7 R* K- C
Column 74 Side (I)4 W, ^% y! u5 z) P0 g) k% Y' V9 f
0 - Controlled bus is one of the terminals 5 ^- n: E7 @& G0 ^( [# q3 g* U 1 - Controlled bus is near the tap side - C2 T& c ^4 R/ `" S/ | 2 - Controlled bus is near the impedance side (Z bus) ) v" \ T) i9 B8 e7 tColumns 77-82 Transformer final turns ratio (F) 7 K U; p9 B1 q3 y6 NColumns 84-90 Transformer (phase shifter) final angle (F) 5 I2 k$ u& o' E, D7 _) [+ s, @# bColumns 91-97 Minimum tap or phase shift (F)" s7 o4 I; e8 T9 d
Columns 98-104 Maximum tap or phase shift (F) 4 u' ?% i6 J9 [0 u/ jColumns 106-111 Step size (F) : |# f# Z9 A3 R1 r: q1 S2 X/ n& L# aColumns 113-119 Minimum voltage, MVAR or MW limit (F) 1 i# D+ w* n* s' F0 tColumns 120-126 Maximum voltage, MVAR or MW limit (F) 6 H; W' `# J6 {( O7 _Section end card: & {3 i1 k) p( C/ @% b, B( U7 i-----------------; \& |% W1 s) c0 G1 b
Columns 1- 4 -999' O& Z5 K- i; C4 V/ V7 i* ^
Loss Zone Data/ q3 O& v0 Q: t( Y
============== + M# H4 t) w1 x* |) l9 _Section start card 2 K2 a, r/ ~5 y$ F------------------ % P- Y% K$ \+ b+ L/ U5 I' q6 AColumns 1-16 LOSS ZONES FOLLOWS (not clear that any more than LOSS 7 H4 y6 d0 a; `2 t% W2 M2 z is significant) ; Z/ _+ j5 {7 d2 u- f2 g" |Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) : ` m8 P+ m# C; U- m' RLoss Zone Cards: 0 I2 y: r8 C$ b6 Y----------------# v' p; r) ]0 ^4 {' E2 I# s }
Columns 1- 3 Loss zone number (I): I" C0 U+ K+ `; M8 H2 I. H
Columns 5-16 Loss zone name (A) ! Z9 l' L5 S2 h: ASection end card: % `8 ]5 g0 f! J2 b5 j% K-----------------4 r L+ s, b3 U" F* r5 h: A) }/ i
Columns 1- 3 -99' W$ Z% L' ~1 j) y' Q8 d6 {
Interchange Data * - q+ p8 F5 \1 c4 u& b& l================== . |4 Z1 K6 i% _3 TSection start card, J0 S% p5 x5 }! v' @
------------------ , j: w+ W) Q7 k/ Y# i; |3 G; \Columns 1-16 INTERCHANGE DATA FOLLOWS (not clear that any more than 3 j! x( O1 ]" j3 n+ y- o1 l) d
first word is significant).. X5 l0 G$ G7 h
Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) % S. E: ~9 V: k1 X/ L1 c9 vInterchange Data Cards *: H2 O5 }" N7 L& t$ E7 R3 P
-------------------------4 {$ W5 f: C9 x" c
Columns 1- 2 Area number (I) no zeros! * ; q& t# G2 x% |) P- p/ |Columns 4- 7 Interchange slack bus number (I) * # Q, D% f& k9 q( M4 IColumns 9-20 Alternate swing bus name (A) ' x& l( ~% [5 r% ?Columns 21-28 Area interchange export, MW (F) (+ = out) * ! h. V! p) I0 i/ w+ a, l/ KColumns 30-35 Area interchange tolerance, MW (F) *: E9 s) M8 W+ P0 S- V1 z% S
Columns 38-43 Area code (abbreviated name) (A) * / `3 d' ~$ u: ]6 tColumns 46-75 Area name (A)1 C9 `6 q3 v$ i# e. ]+ g
Section end card: 8 Y- `2 f1 L' w5 {-----------------9 U" ^. k( z0 G H \
Columns 1- 2 -9( ], B' }: n5 ?
Tie Line Data, c1 N+ D) j: \5 \" P
============= * \1 [% y+ H4 S6 [# Y- LSection start card ' V: ?1 |1 T4 g; y- e5 z. _------------------1 A+ b% m7 o( I" b1 h1 c* `
Columns 1-16 TIE LINES FOLLOW (not clear that any more than TIE _0 t3 Y* }$ F( d
is significant): @3 v8 Y; F* K) u6 W
Columns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) 2 @) Y' A' f, S9 D4 m3 yTie Line Cards: 0 M: j8 r7 R% z& s--------------- , d" j$ B8 X$ v) W( {8 S4 ~Columns 1- 4 Metered bus number (I) 7 O5 u8 l& m: \4 A* W, o: \Columns 7-8 Metered area number (I) - O! L0 @- ?: Y$ h9 j' [4 T: ?Columns 11-14 Non-metered bus number (I) 0 `- j* M$ p: r& a6 bColumns 17-18 Non-metered area number (I)0 h6 u- J2 u$ F+ ]9 f+ X: W5 p3 j
Column 21 Circuit number# P3 Q8 Z" X' Y
Section end card: , d! f& {2 d' l- w. O( f' z-----------------. K# @3 \: S3 F1 D9 \4 v' Q" P
Columns 1- 3 -999 & \7 k7 N' X& R" |% W8 K* w+ _- f* Z) lEND OF DATA. N; D4 z# o( F# |. ]+ u
5 f7 k1 L/ v* [" P
PSAP File Format7 e4 Z4 L# D& ?; i& Z! n
May 20, 1993 5 Z( F3 a$ [" t; EThe PECO PSAP File Format is fully described in the _PJM Power System/ @9 F( S& n, y- s0 m* N9 t
Analysis Package Use's Guide_, available from the Philadelphia # ?3 I, I9 |" m% i) _! t+ @( V) cElectric Company. The following is a rough description of the 2 [+ V$ G" I# a- k9 n+ d3 n8 Pmost important parts of the format. 3 f; A6 I) X% t2 R C lA PSAP data file is divided into sections by code cards. The code is / p/ _, J. I: Q) G) min the first three columns. There are something like 60 codes, of7 v/ M" S! ~; }5 T: ^; h
which only four are described in this document./ [2 f: V- G- s7 X/ Z# y! i* y- d
The 1 code indicates that the next card is the case title. Only one * X" }; l6 v. ?title is allowed per case. Z+ G; j/ v' [0 P$ {
The 4 card indicates that line data follows. The line data ends with+ p9 L% q. N- b# r. S
a 9999 card. % [. X5 m# T9 I' bThe 5 card indicates that bus data follows. The bus data ends with" A% A# K/ j. b, F8 `3 q0 K
a 9999 card.6 h; c0 A A0 r, N( q0 ]
The 15 card indicates that area interchange data follows. The data ends with5 G8 h" C4 e* a
a 9999 card. z( L3 y. d9 s1 YLine Data Card (Code 4 cards)5 G/ L( j. ?+ V, V
=============================4 C! E/ _& e+ X& ^4 [
Cols Data 9 `. [8 F0 T* x; {' ?/ _& O. l1-4 From bus number' Z1 a' m$ t1 a7 T; H2 P. X! o; D
6 Change code (blank in 4 section)" @, ?) z% a. B2 J/ L
7 'C' if second card present for same line. Used for transformers.1 T+ t+ `1 W b$ e8 X
9-12 To bus number: u! m& k8 z: z
14 Circuit number (blank in 4 section)% d$ O7 l5 {! Q/ d- i: k
16 'T' or 'F' - Load flow area of bus at this end of line gets losses. ' k; y$ J) N8 k/ G. V5 U18-23 Line resistance in percent of base. (NOT per unit.)5 }! w: h( ]& b- m' ^7 x
(percent = 100 x per unit) Two default decimal places.2 a( L+ T' H& J' u l
24-29 Line reactance, in percent. Two default decimal places. $ v% `% D* T( U- K30-35 Line charging MVAR (total). Three default decimal places. 5 {( J, n; J; r36-40 Transformer tap (per unit turns ratio). Three default decimal" |" e7 {# o' T& }
places, 1000 = 1.000.) A2 f$ P8 [; C& @
41-45 Min tap, for OLTC. Three default decimal places. ! t; d) r4 J0 ?& `& `46-50 Max tap, for OLTC. Three default decimal places.1 S+ p. V- a( n; N( A
51-55 Phase shift angle, for OL phase shifter. Two default decimal places.- u/ `5 ?5 l% `; m2 v) a$ R" R6 |
56-60 Remote voltage control bus number. Negative if lower tap increases 1 e0 s: e! P; i# {- d% w voltage of this bus.: d Y9 } \* D% A
61-64 Normal MVA rating 9 I! G4 y( D0 q+ y* r65-68 Emergency MVA rating. k8 J$ `4 m1 Z; M) A" r7 |5 `+ S
69-72 MVA Base. Default value 100 MVA if blank.! G4 c. V2 ^$ f" ~* Z' R6 C
Second Line Card (follows 'C' in first card) : B5 x4 {$ a o4 V1 f7 A============================================& z# N- r0 K8 y& K$ b- L0 [3 `4 U
1-17 Same as first card, except no 'C'. Can be left blank.+ Z6 B( S1 |5 k# ]8 A
35-40 Desired MVAR flow or Min voltage setpoint for OLTC. : G1 {+ g8 o' d* L a41-45 Min phase shifter degrees. Two default decimal places.1 l2 ^, m t4 w. e
46-50 Max phase shifter degrees. Two default decimal places. 0 @$ p; T, ?9 B3 n2 {& t, n51-55 Desired MW flow for phase shifter. - g# f) ~, E+ ]5 X' l; w* I57-60 Controlled line from bus.4 s1 d" N7 z1 [& j$ @; H }9 ^( B
62-65 Controlled line to bus.+ D) a8 l& o# q- t
67-70 Available taps (number of taps)0 f" V5 V1 ^) M
71-75 Maximum voltage setpoint. Three default decimal places. 8 K- \3 B: U/ ^3 S O' h6 BBus Cards (Code 5 cards)" ~( j* c1 l x; ^) ^& a( I
========================4 p! X0 P3 C3 j2 j8 |3 O0 H @
1-4 Bus number $ n' [) U7 u6 y9 C6 Change code (blank in 5 section) 6 L- R; c) [$ X) o m# {7 Continue code (blank in 5 section) 5 K6 G" q: ?. v8 Regulated bus code:- a" M x! R. h4 v
Blank - load (PQ) bus % `2 S/ g# k6 Y. o5 s 1 - gen (PV) bus 1 p) M0 v* q) R; V) n% z; N 2 - swing (V-Theta) bus : b9 c% L1 s8 t6 i; ?( D7 I10-21 Name . {+ b& L( d4 |0 j- k23-26 Bus voltage (control setpoint or solved value).3 m( e$ j9 h3 o% I+ d
Three default decimal places. 6 y+ Q( L, t3 v% [27-30 Bus angle 8 g+ G' E/ Z T9 B; J% F! g: [31-35 Generation MW: G5 M; ~# S1 j) F8 m
36-40 Generation MVAR (from solution)2 i, v5 u, r8 q8 x7 P( ~
41-45 Generation MVAR low limit9 e( a3 i! P6 E l
46-50 Generation MVAR high limit- P7 u1 U0 q9 R. I0 z4 j. Z
51-55 Bus at which generation controls voltage ; s; C8 J2 ?/ z- y& l% q$ W H56-60 Load MW 3 J8 t3 u; a+ z+ w+ {9 ^' u. a61-65 Load MVAR/ [; b) C$ E, H/ G) ?: ^
66-70 Shunt MVAR. Reactors are minus.) \5 e& f% J" }: V7 Z
71-72 Load flow area. (Used for area interchange and losses). / {( H% `) r; ?, HArea Interchange Cards (Code 15 cards) : B5 O3 e- B9 ?======================================9 b# H4 X/ A( m/ U' G
3-4 Load flow area number ) X9 \2 g! I: D5-8 Swing bus for area interchange. Adjusts generation at this bus7 Y# [; j0 M$ U& n
to meet area interchange requirement. 8 T+ }: \4 a8 q4 X7 Y9-14 Area exports, MW. (+ = out of area)5 R: _6 y' U% }1 B3 v! Q8 c! A5 ~
15-19 Area Interchange tolerance, MW( |, d* n6 n0 C- R5 X6 @; R
20-55 Area name' H) x; y/ L7 s- E$ Z! V% H
56-60 Area load (usually left blank)0 X8 T% l. Y# j$ `/ |: u/ B
61-65 Area losses (usually left blank). B" ?2 M+ k& e; p
/ o" ?* {; j3 U" i, KDescription of the PTI Load Flow Data Format 2 a. d& d& @+ ~7 B K# \============================================ % k: E( ^: X% b8 t3 \' ]% _Note that PTI reserves the right to change the format at any time.( j7 y0 G) C. c- h% [2 _% V
For use with the IEEE 300 bus test case in PTI format. # u* l l' o) x! WCase Identification Data ( ]( f6 b& C/ m8 U: F9 J4 R========================9 r: U7 d% ~- w; r
First record: IC,SBASE( A5 j Q! c6 ]4 H
IC - 0 for base case, 1 for change data to be added * S* R3 ]! Z3 t! M# M SBASE - System MVA base& a3 J3 F% t' i: a
Records 2 and 3 - two lines of heading, up to 60 characters per line# l2 z+ P+ e# F9 h% g1 i. q5 q
Bus Data8 k8 U2 G* R% j3 w# d5 J$ }6 f
======== ( Z. X+ N# }" x8 } T* o4 X2 ~1 kBus data records, terminated by a record with a bus number of zero. - \: V0 d [! n& fI,IDE,PL,QL,GL,BL,IA,VM,VA,'NAME',BASKL,ZONE9 W% r$ k, K: d! t7 R! D: C
I - Bus number (1 to 29997)" ~% K! t9 ?# x
IDE - Bus type! m+ {+ f9 u+ J8 f
1 - Load bus (no generation) * b' Y% r' _$ ~4 z 2 - Generator or plant bus / `( P+ e/ m# V" O! S7 w# F2 i 3 - Swing bus5 n9 R3 B/ q+ E* [, w$ a
4 - Islolated bus9 K: P' X) R" ~+ `
PL - Load MW ) Q9 K+ K; V% O9 t# w1 h- e* H: J QL - Load MVAR 6 W% n* t% I1 _& U: \- |- ~ GL - Shunt conductance, MW at 1.0 per unit voltage- X& m! d+ X0 H6 g. h
BL - Shunt susceptance, MVAR at 1.0 per unit voltage. (- = reactor) ! k1 e5 W% e9 u6 a7 x- ]% { IA - Area number, 1-100 . }, A/ K9 t9 f% H VM - Voltage magnitude, per unit / `1 J5 f1 P5 J2 B5 ^ E4 u VA - Voltage angle, degrees6 W7 m- }' X' w
NAME - Bus name, 8 characters, must be enclosed in quotes! n; W H3 S) c/ N5 n0 Y- @) z8 {" d
BASKV - Base voltage, KV* d( ^7 L, s: [1 j$ Z
ZONE - Loss zone, 1-999 / [) c* i( K7 _Generator Data3 `5 h" r/ ~: J; y3 W
============== # G3 L8 D h( _8 kGenerator data records, terminated by a generator with an index of zero.4 x1 O2 W) Y% ~" j% ]0 }
I,ID,PG,QG,QT,QB,VS,IREG,MBASE,ZR,ZX,RT,XT,GTAP,STAT,RMPCT,PT,PB * F+ a7 @& g# g0 ^7 WI - Bus number. V+ M" |9 z3 U$ A( S
ID - Machine identifier (0-9, A-Z) * M7 d5 s8 k9 h& T( [/ S* wPG - MW output % c: G( O+ a* d3 a5 h. NQG - MVAR output ! j- q4 I$ K, b( j; Y i% eQT - Max MVAR - T/ r B6 H" r8 A( }QB - Min MVAR" R6 g5 E* \/ z2 F. ^$ i7 I' E
VS - Voltage setpoint " | n0 J+ j( i9 F; |3 oIREG - Remote controlled bus index (must be type 1), zero to control own ?- Y5 L, B, \; ? voltage, and must be zero for gen at swing bus+ m0 f& {7 ^* J$ }# d+ ^
MBASE - Total MVA base of this machine (or machines), defaults to system & w7 ^2 x3 C1 z: G MVA base." Z' Y# F a9 N1 q
ZR,ZX - Machine impedance, pu on MBASE - g4 m+ ]2 H5 }RT,XT - Step up transformer impedance, p.u. on MBASE $ y% A3 L' B. F6 h1 j1 B# b, p- AGTAP - Step up transformer off nominal turns ratio$ K; E8 ^. A( j& d: W4 c
STAT - Machine status, 1 in service, 0 out of service/ q: k( Q, C, h* d
RMPCT - Percent of total VARS required to hold voltage at bus IREG Z2 [- O+ {7 p1 O; S! p/ w to come from bus I - for remote buses controlled by several generators ) ^ [; A/ K3 \! w( M. `PT - Max MW- ~! G/ Z. g- x& d
PB - Min MW ' L5 D! X1 v7 k& r2 sBranch Data# A( Z, U% F$ D0 G7 D, f8 q4 X& r7 h
=========== : U# ]( t) R+ Z" q, NBranch records, ending with a record with from bus of zero0 u+ {/ e- L/ M# @
I,J,CKT,R,X,B,RATEA,RATEB,RATEC,RATIO,ANGLE,GI,BI,GJ,BJ,ST! n; x; _/ B$ w( Z
I - From bus number1 n* B' b1 `& B9 y
J - To bus number & z( w7 z! i$ O, d. ?& G7 a, UCKT - Circuit identifier (two character) not clear if integer or alpha $ I% v/ ~& I" Y+ k* w) I" Q8 J: oR - Resistance, per unit' f) D: _3 ^' Z* G
X - Reactance, per unit 3 l0 C$ s3 F; f' dB - Total line charging, per unit % k9 M1 u/ R* a! h/ F5 }6 g; Y& \RATEA - MVA rating A: E; W' R7 w( q9 A& U1 A5 \
RATEB, RATEC - Higher MVA ratings! }9 C9 ~. `2 H; L
RATIO - Transformer off nominal turns ratio& \7 |4 t5 [7 v4 F" C
ANGLE - Transformer phase shift angle ( u/ ~) ?9 V- \: Q" Z2 PGI,BI - Line shunt complex admittance for shunt at from end (I) bus, pu.' z# p* a( t$ T
GJ,BJ - Line shunt complex admittance for shunt at to end (J) bus, pu.8 g8 M+ E% I# x- h5 p
ST - Initial branch status, 1 - in service, 0 - out of service- b( J- C% M# ] A
Transformer Adjustment Data) q! |% e: z# f" t7 c; T
=========================== + l( D ~" S% f" v: iEnds with record with from bus of zero 7 c. l% d5 z* f } HI,J,CKT,ICONT,RMA,RMI,VMA,VMI,STEP,TABLE 1 j# y" U! U7 A7 H* I) l8 S9 F& P0 qI - From bus number3 M& q5 d X1 B" }# o7 G9 l
J - To bus number ( h4 T+ X8 k+ ?) S# O2 qCKT - Circuit number 7 a; A, O4 w7 }2 r8 iICONT - Number of bus to control. If different from I or J, sign of ICONT4 l/ u/ a* W9 y) Q2 y5 H. o8 ]& Z6 J
determines control. Positive sign, close to impedance (untapped) bus 7 I% G" D/ i2 X of transformer. Negative sign, opposite. 6 Z; y& A; C8 i6 l6 E& ~' [RMA - Upper limit of turns ratio or phase shift _& {& W8 Y* Q. C$ ]RMI - Lower limit of turns ratio or phase shift : g c+ z% i! g% J3 s5 c- o. p6 {0 n$ DVMA - Upper limit of controlled volts, MW or MVAR m1 [6 v2 ?/ n$ \5 Z
VMI - Lower limit of controlled volts, MW or MVAR 8 W: Y, `7 I* J( m% u) `STEP - Turns ratio step increment- x' G& A* `; B/ K" F6 m
TABLE - Zero, or number of a transformer impedance correction table 1-5 8 n: u0 U' F; V3 ^Area Interchange Data / F# g' a% I0 V {; t=====================" H2 s' k9 d* k( I
Ends with I of zero % x2 `& R* A3 M7 u2 ]4 UI,ISW,PDES,PTOL,'ARNAM'' _$ W, p- `3 w
I - Area number (1-100). s/ z: N1 t3 i# @) M
ISW - Area interchange slack bus number p1 k3 Z9 a( YPDES - Desired net interchange, MW + = out.+ k2 s$ l D7 ]( P M
PTOL - Area interchange tolerance, MW. {( d( j. s+ h
ARNAM - Area name, 8 characters, enclosed in single quotes.& M/ P; M4 m6 j2 ^) v
DC Line Data8 [! n x& O; X4 g; t2 ^2 o
============ % ?6 U, B: O$ WEnds with I of zero 3 Z) d6 W* L' M+ a/ v& X' }Each DC line has three consecutive records $ k* \% t4 C+ t' p7 x; V" \1 ]I,MDC,RDC,SETVL,VSCHD,VCMOD,RCOMP,DELTI,METER6 t& u- c( Z6 `2 R
IPR,NBR,ALFMAX,ALFMN,RCR,XCR,EBASR,TRR,TAPR,TPMXR,TPMNR,TSTPR; @8 y: M) [! A- X1 W
IPI,NBI,GAMMX,GAMMN,RCI,XCI,EBASI,TRI,TAPI,TPMXI,TPMNI,TSTPI- r3 ]2 q& y3 q
I - DC Line number& n" h# a8 z2 e& `# m; V$ Y- [
MDC - Control mode 0 - blocked 1 - power 2 - current - l p2 j' x/ W! u! U1 sRDC - Resistance, ohms- ~5 E( F/ R3 a# m9 b3 h& Y
SETVL - Current or power demand' Z2 O! n* s( `$ f
VSCHD - Scheduled compunded DC voltage, KV' P' J" M2 F( ~0 c9 f7 h
VCMOD - Mode switch DC voltage, KV, switch to current control mode below this: @% d/ Q' N' C3 V& k( k! |1 F
RCOMP - Compounding resistance, ohms 5 M8 r- | G, m7 J7 C9 B5 t6 IDELTI - Current margin, per unit of desired current 6 ^0 a9 q% a) K, g9 r# Z, cMETER - Metered end code, R - rectifier I - Inverter ! t: U! f# M, D$ E+ CIPR - Rectifier converter bus number6 r0 ?2 w2 i+ ` f! M* v
NBR - Number of birdges is series rectifier% X& C& t& E5 F
ALFMAX - Maximum rectifier firing angle, degrees / `$ U1 }- H/ R1 f: t8 b* wALFMN - Minimum rectifier firing angle, degrees 1 c5 p! I) w1 ]% `6 fRCR - Rectifier commutating transformer resistance, per bridge, ohms * p% |, ^, x, V. f1 a# m* W' v: S8 uXCR - Rectifier commutating transformer reactance, per bridge, ohms+ l* I) d+ G% g4 G* N& h0 k3 ^
EBASR - Rectifier primary base AC volts, KV: \# s5 \# B# o9 s
TRR - Rectifier transformer ratio! F% \3 j9 v$ a6 d9 A
TAPR - Rectifier tap setting: e( A: g I; M: ~7 }: m
TPMXR - Maximum rectifier tap setting7 ?) @) \1 y- f9 K6 c ~/ H/ e
TPMNR - Minimum rectifier tap setting- j! c/ O$ S' g8 Y1 x" I
TSTPR - Rectifier tap step 7 k% m' S$ b+ \" {Third record contains inverter quantities corresponding to rectifier 4 Z' n+ i/ o" m' L! Cquantities above. ' H& }7 b0 V* b8 ]Switch Shunt Data * p$ D9 e7 S- ?0 o' o3 p# H=================4 g$ | i5 d: T# {! q/ q( G3 E
Ends with I = 0. : r3 Z/ O- [. nI,MODSW,VSWHI,VSWLO,SWREM,BINIT,N1,B1,N2,B2...N8,B8( D& L- X5 A& ~" ` b8 X% g D
I - Bus number ; ]$ l3 [ p8 y: u, U/ |MODSW - Mode 0 - fixed 1 - discrete 2 - continuous* ^* ?/ K9 S& e; u" F$ s4 w3 u
VSWHI - Desired voltage upper limit, per unit * |1 J! y! Z6 P! l! Z$ x8 YVSWLO - Desired voltage lower limit, per unit 2 U' E, ^ U: `5 ]/ Q1 W! w% Z$ WSWREM - Number of remote bus to control. 0 to control own bus.; w2 F( R) f0 a: g8 t. W- }! u5 A
VDES - Desired voltage setpoint, per unit # U& { C, t# m( tBINIT - Initial switched shunt admittance, MVAR at 1.0 per unit volts! {8 E+ g4 W' G
N1 - Number of steps for block 1, first 0 is end of blocks * z1 }" ?+ L$ H; q; F& XB1 - Admittance increment of block 1 in MVAR at 1.0 per unit volts. - x t7 k; E! u) i1 l0 ZN2, B2, etc, as N1, B1