Partial Description of the IEEE Common Data Format for the 0 ^8 b; l9 N1 y k+ O* Q4 D
Exchange of Solved Load Flow Data 6 a: h$ [" Q3 f0 B8 ?' P: rThe complete description can be found in the paper "Common Data$ D& P' \1 {' P
Format for the Exchange of Solved Load Flow Data", Working Group on a ! ]1 K$ z. A" u% cCommon Format for the Exchange of Solved Load Flow Data, _IEEE 4 q% p/ s% P6 B* d" XTransactions on Power Apparatus and Systems_, Vol. PAS-92, No. 6, ; G3 Z' W5 b9 HNovember/December 1973, pp. 1916-1925.1 e4 B% b9 F0 q7 s+ W
The data file has lines of up to 128 characters. The lines are grouped . k9 A) H! @- r. sinto sections with section headers. Data items are entered in specific% N7 ]4 |5 ^% K0 {" U" O; d" z$ F
columns. No blank items are allowed, enter zeros instead. Floating point1 k4 @" \4 K) V
items should have explicit decimal point. No implicit decimal points1 o4 r' ^5 p* p# f
are used. ; a/ ^. v" b- A8 N$ z* uData type codes: A - Alphanumeric (no special characters)7 n& B+ N6 ~' |; s O, U, G
I - Integer ' U/ |4 S8 m& j G0 k P F - Floating point/ b. I; ~8 y7 s
* - Mandatory item 3 V Q8 v% g# Q- H, kTitle Data ) ^$ P3 r- K1 m5 s========== 3 { ~" K) ~2 W( [+ j% MFirst card in file. % c' v4 Y- u) w7 m( FColumns 2- 9 Date, in format DD/MM/YY with leading zeros. If no date4 N) q5 J- G$ s7 W; ~, Y* x. `0 F
provided, use 0b/0b/0b where b is blank. ; Y8 w) ]+ w2 L- l9 YColumns 11-30 Originator's name (A)- x* I$ @% ^) p, G2 C1 t1 x
Columns 32-37 MVA Base (F*) 4 `8 [" F! o+ _Columns 39-42 Year (I) + W% L* B5 l, r) o; N0 [) k `# hColumn 44 Season (S - Summer, W - Winter): r0 d* Z+ M! {
Column 46-73 Case identification (A) ) f, d% W9 w3 S1 [" a1 J# |Bus Data *$ z" H7 N. Q4 j: s
========== ) ~& o$ k/ H) ESection start card *: 8 D6 f! a( m7 G---------------------: o6 B! i! ~& S" `5 c4 D3 Z0 S
Columns 1-16 BUS DATA FOLLOWS (not clear that any more than BUS in' ~! p) V6 a. @8 D
1-3 is significant) * 8 J C3 r- t3 j" e* K/ [Columns ?- ? NNNNN ITEMS (column not clear, I would not count on this) 5 x2 S; k- l9 N$ ~% @Bus data cards *: 9 F _1 @. f( ^' X+ I) z; u-----------------8 l3 l9 _2 k+ \) P
Columns 1- 4 Bus number (I) ** p" g0 A+ M* C
Columns 7-17 Name (A) (left justify) *( S* `2 \$ M& i
Columns 19-20 Load flow area number (I) Don't use zero! * 6 [" Y% U; C2 Q; NColumns 21-23 Loss zone number (I): k$ D$ s4 k+ g( M$ L
Columns 25-26 Type (I) *% _3 h. G' [- p1 \/ D
0 - Unregulated (load, PQ) ! P- v# T/ Y5 ^8 n# p7 R 1 - Hold MVAR generation within voltage limits, (PQ) $ G/ \- E0 t9 O1 S: y v 2 - Hold voltage within VAR limits (gen, PV) ) v& |( V2 s4 p4 u9 {: f9 w0 h8 C 3 - Hold voltage and angle (swing, V-Theta) (must always 4 S6 z& J. m$ n7 w3 l+ |- g# V have one)$ L* G! X5 E4 y& D& ?- j: e
Columns 28-33 Final voltage, p.u. (F) *! j! W9 C5 q' p7 U) T6 C
Columns 34-40 Final angle, degrees (F) *6 V; `2 j+ I4 q* b% N
Columns 41-49 Load MW (F) * 9 G. V) w: F# b. b2 S5 UColumns 50-59 Load MVAR (F) * + H& W( t1 h0 FColumns 60-67 Generation MW (F) */ z/ c. w4 L, q' I5 K
Columns 68-75 Generation MVAR (F) *) D! G) ~6 c0 [% D6 d" T# l
Columns 77-83 Base KV (F)" O9 [( F7 i3 K- |+ V
Columns 85-90 Desired volts (pu) (F) (This is desired remote voltage if 5 d# N5 y. g2 v6 N this bus is controlling another bus. 9 B$ M) s5 u$ |- y! `+ Z; hColumns 91-98 Maximum MVAR or voltage limit (F)' J* h7 Z3 X9 [# c* q5 ~
Columns 99-106 Minimum MVAR or voltage limit (F) ( R; e( B1 ^/ Z; TColumns 107-114 Shunt conductance G (per unit) (F) *# L# v8 }) |$ X% }6 K, n) }* ~! t
Columns 115-122 Shunt susceptance B (per unit) (F) *. ^- k' l# r! _5 X
Columns 124-127 Remote controlled bus number0 F0 n Q! _: S- w
Section end card: 0 }+ D- a2 Z$ v" E1 l N----------------- 6 `7 j0 z+ u- x5 z* u$ oColumns 1- 4 -999 4 O8 I+ k8 M1 B% G6 qBranch Data *) t/ n# d! F5 Z% F0 m. W
============= ' i K) _) @6 ySection start card *: + f# V+ \1 w: X& ^- \& n% D--------------------- 7 G# ?& }+ w; T$ L. K2 R8 W4 I& K/ O+ PColumns 1-16 BRANCH DATA FOLLOWS (not clear that any more than BRANCH, ? u8 i2 t/ @& U, d
is significant) * 9 A) v" d9 F2 P! CColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this) 0 e' Y0 d l1 j/ M& TBranch data cards *: b# x3 b% g1 f. E# o$ w--------------------& H4 _8 _+ R5 E
Columns 1- 4 Tap bus number (I) * , O$ {9 U# g, f For transformers or phase shifters, the side of the model' k) N3 z+ g$ q: S; T5 p
the non-unity tap is on' p# a5 {9 }: P5 ]
Columns 6- 9 Z bus number (I) * - w/ x0 y$ b5 t# s2 t. ?' ^ For transformers and phase shifters, the side of the model( W1 e- L: Z( j, i
the device impedance is on. ; R+ F2 E* F$ I4 Y! U# v8 ^Columns 11-12 Load flow area (I) $ |& a6 m) ]! s9 V0 j rColumns 13-14 Loss zone (I) W0 G. B# j( b# x% {& H: Z
Column 17 Circuit (I) * (Use 1 for single lines) : o$ f) o& a5 h- EColumn 19 Type (I) * 4 i2 ~4 I% Q' Q+ J 0 - Transmission line$ p& h5 \# [( S5 @
1 - Fixed tap / E8 i% G4 z( W" k; o" f4 g 2 - Variable tap for voltage control (TCUL, LTC) & s* i3 G: b( ?) f; v3 X 3 - Variable tap (turns ratio) for MVAR control2 c& g( h3 P* L0 y5 z
4 - Variable phase angle for MW control (phase shifter)% a8 u s ~% W4 O) e1 g
Columns 20-29 Branch resistance R, per unit (F) * - N- q0 ?$ f6 c& ~& j" kColumns 30-40 Branch reactance X, per unit (F) * No zero impedance lines ' I2 Z0 E1 p3 \ W- @5 dColumns 41-50 Line charging B, per unit (F) * (total line charging, +B) , X& K8 D- }9 Y4 U& R, CColumns 51-55 Line MVA rating No 1 (I) Left justify!. p Z9 g6 [; F
Columns 57-61 Line MVA rating No 2 (I) Left justify! 1 r3 U# h( c. u, O" A. C! o1 ?Columns 63-67 Line MVA rating No 3 (I) Left justify!" p3 ^! B6 [8 z
Columns 69-72 Control bus number + E( J+ r6 O* R4 x9 RColumn 74 Side (I)" j' N) e0 v) u9 _* b9 ^
0 - Controlled bus is one of the terminals % G6 i+ Z3 h7 W0 U- B 1 - Controlled bus is near the tap side$ H7 f- h9 u8 _" V8 K/ J K
2 - Controlled bus is near the impedance side (Z bus) 2 G3 ^6 t2 B3 l7 J; KColumns 77-82 Transformer final turns ratio (F) 8 @, L8 @9 x1 g' e1 w, p/ YColumns 84-90 Transformer (phase shifter) final angle (F); @! k$ W6 I# K* L
Columns 91-97 Minimum tap or phase shift (F) 9 b# F; r+ H M) TColumns 98-104 Maximum tap or phase shift (F)1 P3 V- P% ~; A% S. Z; S, S2 ~" _; W
Columns 106-111 Step size (F) 9 B* r9 C Q7 }; iColumns 113-119 Minimum voltage, MVAR or MW limit (F) " `, I, X1 k) Y8 P2 Y: _2 [0 R, jColumns 120-126 Maximum voltage, MVAR or MW limit (F) : p2 {2 q7 R% NSection end card: 8 ^8 j" [& ~$ u-----------------( B3 X t$ H. X) g# y
Columns 1- 4 -999 # G3 l* H9 G K( v, m4 }6 _! PLoss Zone Data - I$ x, }9 t# @! B, x1 N; h& g0 _==============- H5 w4 d/ P( n; l
Section start card z9 ^. g7 g5 N------------------8 C# O. R) v4 l) \" A
Columns 1-16 LOSS ZONES FOLLOWS (not clear that any more than LOSS0 q/ I2 u% I2 R. v# e( Q
is significant) ' {% s# Z1 n8 b( x+ {; q2 ~5 OColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this)/ U5 |; H' I' P5 [7 ]
Loss Zone Cards: ?& O. M8 Y1 M2 y5 A---------------- 4 n" S# B. @, t- u" }6 L4 }1 [Columns 1- 3 Loss zone number (I) ! q/ K7 l+ K) V9 ?. }Columns 5-16 Loss zone name (A) + h/ h, n6 Z! {: H1 zSection end card: 0 I5 n6 a0 {$ X: `! v7 I4 j0 b-----------------; m% t# C$ X. V
Columns 1- 3 -99; h. P$ a. Z8 P# [( ~+ M! {
Interchange Data * 8 ^9 @, K" X+ X, c8 H" l/ g/ N================== % S6 e1 J) N& Z* l+ \ h5 E3 `$ \Section start card4 M! M( R2 B u% [
------------------ ' K! c& R3 M: u6 f5 BColumns 1-16 INTERCHANGE DATA FOLLOWS (not clear that any more than ; c+ b! {5 a6 t3 W( M1 j0 F
first word is significant). ! N' p, p# n! e+ IColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this)4 w$ C* m+ l+ J! E0 M
Interchange Data Cards *: 3 A, P4 A0 ~$ n------------------------- + x, y# g( k& N/ nColumns 1- 2 Area number (I) no zeros! * " ~$ I6 l3 i. z3 jColumns 4- 7 Interchange slack bus number (I) *) Y2 u- S8 B9 ^, V; b1 O U6 `' k
Columns 9-20 Alternate swing bus name (A): K9 E7 x1 ~. z0 I
Columns 21-28 Area interchange export, MW (F) (+ = out) *- j8 w3 v5 v- j9 {$ ?
Columns 30-35 Area interchange tolerance, MW (F) * " x9 |, U$ ?8 @! [+ r* q" w. M5 z" mColumns 38-43 Area code (abbreviated name) (A) * 5 u: h( c4 ` i$ v: IColumns 46-75 Area name (A) 4 n4 P! J! ]) zSection end card: " i- `; `/ B# p3 R+ I8 } U7 \----------------- 3 c9 k1 ]# x' c# Z% D3 tColumns 1- 2 -9 2 f; |! b/ r* d% c0 t; I6 Y# BTie Line Data7 K# Q: P' q# a) c; m% b. I R
============= 5 ?( r* c$ }, W+ u! X- X' tSection start card 7 U" H7 r3 T, K0 q: A! V9 n0 _------------------" {0 h. w: V( j
Columns 1-16 TIE LINES FOLLOW (not clear that any more than TIE , M" t% M2 n9 l; F( X. l is significant) ' J; L2 ?) a, A' t. l5 CColumns 40?- ? NNNNN ITEMS (column not clear, I would not count on this)1 g% O+ K6 [/ [9 {) S
Tie Line Cards: + R8 b. @5 r( F$ `2 T9 n: `$ y5 G---------------9 W' q9 Q/ f; l
Columns 1- 4 Metered bus number (I)0 Y+ n8 E z' r7 s
Columns 7-8 Metered area number (I) o/ W/ o- Y! Y4 R% N" s* [% J- ^* kColumns 11-14 Non-metered bus number (I)% f' F- Q; [& }* W0 Y$ H
Columns 17-18 Non-metered area number (I) 1 q7 Q4 t" i% K. S, vColumn 21 Circuit number * H$ C" }2 {8 kSection end card:9 B2 K. C- O/ \. Q: ~% g; K3 B$ k
----------------- . o: S Y5 J+ e/ `; ~Columns 1- 3 -999) b" V# {0 J, E! ]6 d5 T
END OF DATA. Z9 d. l0 |, O- j
& x; K: [6 t+ @. ?. dPSAP File Format/ z$ I1 G- i7 S1 F! K, q8 A* j
May 20, 1993 - ]5 ]: A% J4 ^7 W9 J9 MThe PECO PSAP File Format is fully described in the _PJM Power System 7 f4 G9 P, m/ E( u& @6 A' ^! UAnalysis Package Use's Guide_, available from the Philadelphia, J, k, O, A' s% {$ ^
Electric Company. The following is a rough description of the ) d" i+ o' E5 S; E0 R' K6 Wmost important parts of the format. 7 M% k- e; n9 s, ^9 }( R' o, nA PSAP data file is divided into sections by code cards. The code is" N1 k8 i8 I, |* \
in the first three columns. There are something like 60 codes, of; P8 I0 Z! m* w5 ^+ W
which only four are described in this document.0 I+ ~: B6 {6 o6 |
The 1 code indicates that the next card is the case title. Only one 0 c0 t! z' t8 M3 E, `* _title is allowed per case., h' ^& Q& M# q) |; x7 O! x6 w
The 4 card indicates that line data follows. The line data ends with : h/ T+ B/ O% B: }8 Z$ fa 9999 card. - K# @% _0 k7 A4 pThe 5 card indicates that bus data follows. The bus data ends with6 z( U, d' M, Y5 r4 _
a 9999 card. ! r* C2 T% j% U; ?. bThe 15 card indicates that area interchange data follows. The data ends with, m1 j4 }* R( }
a 9999 card.+ y0 U) g3 f6 p. G# b# h
Line Data Card (Code 4 cards)( i; [5 `2 g4 W
=============================( v8 _3 V) [9 a
Cols Data( z5 z7 |; _( ^% I
1-4 From bus number6 F* M @) M/ [2 d# g8 T6 s
6 Change code (blank in 4 section). V8 g9 U+ k( A4 J
7 'C' if second card present for same line. Used for transformers.1 i/ b8 w0 h2 U% z0 B% F9 t# g
9-12 To bus number ; L, \- C% |" g; J$ N14 Circuit number (blank in 4 section)% k( X4 O* Z9 y# H6 h$ c
16 'T' or 'F' - Load flow area of bus at this end of line gets losses./ c9 i6 j' J" D* @
18-23 Line resistance in percent of base. (NOT per unit.)( ^; i: G) b3 e; f9 R) d
(percent = 100 x per unit) Two default decimal places.- j2 |/ O' P- q/ ^0 a2 e5 L
24-29 Line reactance, in percent. Two default decimal places. . L' Z0 m) J+ x; h30-35 Line charging MVAR (total). Three default decimal places.; e' e5 u) a, K$ U$ E# U+ t- c- o
36-40 Transformer tap (per unit turns ratio). Three default decimal : u$ v+ l: k) H a! `1 C places, 1000 = 1.000. # B1 D* w) V8 [/ ~- f j0 V" F41-45 Min tap, for OLTC. Three default decimal places. $ R# O+ l; D, e46-50 Max tap, for OLTC. Three default decimal places. 8 F. ?; V. N0 O! ~# f# ^# c51-55 Phase shift angle, for OL phase shifter. Two default decimal places.. m- r- u1 j3 K- l
56-60 Remote voltage control bus number. Negative if lower tap increases . J2 p1 H! S' e, c, [' M voltage of this bus. , W1 h( Y' S3 J7 }! V e* r: K/ Z; y61-64 Normal MVA rating ' B& L+ P Q2 a- L7 C; n. \! M6 {65-68 Emergency MVA rating - z9 i" q$ u- `& L! t. g7 U# k' ]69-72 MVA Base. Default value 100 MVA if blank. 6 R. @! o2 b' S* q# SSecond Line Card (follows 'C' in first card) " S3 Q% u, E9 ]) x, F7 D============================================ $ v& U- Z. }* z U1-17 Same as first card, except no 'C'. Can be left blank. , K* I, X& b* t* N& z35-40 Desired MVAR flow or Min voltage setpoint for OLTC.# B+ Q4 Y5 i& H) A4 {8 U
41-45 Min phase shifter degrees. Two default decimal places.* {3 T& i$ J0 y2 J. i
46-50 Max phase shifter degrees. Two default decimal places. - V3 m" o+ J+ W51-55 Desired MW flow for phase shifter. % s* P, e! T& X57-60 Controlled line from bus.+ {4 V# A0 r6 E4 H$ K
62-65 Controlled line to bus. ( o2 r; X" O2 T. _- r8 c67-70 Available taps (number of taps) j( B. [7 }0 l( _( w+ Y71-75 Maximum voltage setpoint. Three default decimal places. / [. V) k2 V" K1 t/ C. Y$ u+ IBus Cards (Code 5 cards)4 s/ i0 [! [+ U; e. {
========================) r7 M: A O* D+ _, l! @. q' Z/ ^ C
1-4 Bus number , Z7 P- p/ j e( r, Q( x9 T$ W4 t6 Change code (blank in 5 section), [. I& h2 |. X" U5 h8 h" ^$ W' g. K# }
7 Continue code (blank in 5 section) / n* `3 O" ?! F2 [8 |* v) G" E8 Regulated bus code: * n# \" M% t* n/ s+ p Blank - load (PQ) bus 8 W% U/ V$ @( |5 @; a5 w" \ 1 - gen (PV) bus& |8 [0 l9 u% \8 E0 m$ `( f+ W4 e
2 - swing (V-Theta) bus& ^ L+ w$ H0 O, G: U
10-21 Name 6 i4 s+ o3 f/ f. W% l- _0 u23-26 Bus voltage (control setpoint or solved value)./ z0 ^- o: e' J R( }. [
Three default decimal places. 8 p/ p6 a! u0 l27-30 Bus angle" e; M! r% n& d: D$ ]6 i# F
31-35 Generation MW# G1 w; h' ^/ o( o1 P0 G
36-40 Generation MVAR (from solution) # l! V- \: y$ e6 c" h# x$ i! I41-45 Generation MVAR low limit% O; ~" N$ v1 s- R; N
46-50 Generation MVAR high limit4 G) e* V0 H2 w6 [! h
51-55 Bus at which generation controls voltage ) |5 u! i3 ]$ X/ Y56-60 Load MW 4 x0 w' {2 r+ U1 A0 A8 i61-65 Load MVAR1 e3 C+ o: |% M2 g2 y' C- E
66-70 Shunt MVAR. Reactors are minus. / `: J6 A# G& m( P# l& b71-72 Load flow area. (Used for area interchange and losses).- P! b3 V" y: G L2 {
Area Interchange Cards (Code 15 cards), H# `' U) V# [* _6 z
====================================== V4 G. b6 S1 Q5 l4 f. r' p
3-4 Load flow area number- w! x9 ]# d7 p. p9 A
5-8 Swing bus for area interchange. Adjusts generation at this bus( ^' T$ A" e1 e+ d( @7 ?
to meet area interchange requirement.( O4 Y8 E0 Q+ X# v, P' W
9-14 Area exports, MW. (+ = out of area) " S. q- x5 ]0 m3 {7 u15-19 Area Interchange tolerance, MW% B, Q& x( k2 P' w" y/ q8 O
20-55 Area name ! G7 Z, E! f" x7 L m: o) ^$ ^$ c56-60 Area load (usually left blank) " P$ O, i- h7 l+ s" @. F6 ~! l. q6 a61-65 Area losses (usually left blank) 8 D& x! z7 U5 ? 2 h. {$ q6 F; s9 z. l2 z# N B6 @0 V+ X* E0 L& \& q- p; e
- v% T8 c: [% r% Z" y% Q2 f0 ]" J7 v
Description of the PTI Load Flow Data Format) o, Q9 q# l" W9 h/ z0 M
============================================" a% v( x; u$ e @
Note that PTI reserves the right to change the format at any time. 3 V6 R; H7 f/ ^! a; Q3 h0 l0 C. `For use with the IEEE 300 bus test case in PTI format.) d. W6 i( Q+ `# @5 L! |9 T
Case Identification Data ' t+ }8 @, `6 s========================% x5 ]$ d+ K# w& n: @$ ?. s
First record: IC,SBASE O8 \$ y. T/ j/ ?, [ IC - 0 for base case, 1 for change data to be added6 v1 ?3 q \# Q# [2 Z v# x
SBASE - System MVA base 9 L+ R2 ?* m, Q& X3 ]( eRecords 2 and 3 - two lines of heading, up to 60 characters per line 2 I; N% b% _, r7 U* |$ cBus Data6 C8 Q6 o! W% f8 O3 F8 D7 c5 f
========/ M a' N( Y( h+ j5 F6 w
Bus data records, terminated by a record with a bus number of zero. & |9 j( n1 h1 c9 X' M! Y J* fI,IDE,PL,QL,GL,BL,IA,VM,VA,'NAME',BASKL,ZONE . @) v* ~2 c4 a I - Bus number (1 to 29997)4 I+ _, C+ c8 x6 Q+ N
IDE - Bus type X. e. b4 z) B: T! ^( S 1 - Load bus (no generation)' H& s4 m- [: m3 n
2 - Generator or plant bus7 w8 P6 F$ S/ d3 y( t! T0 |' l; D
3 - Swing bus : C/ {# q) K7 r7 \ 4 - Islolated bus( ^/ [. v* i' t [0 H8 i
PL - Load MW & ?0 ^* H9 Y% ?: G( o; B: j QL - Load MVAR, u+ A6 Z! E+ f6 f
GL - Shunt conductance, MW at 1.0 per unit voltage* H3 H1 j" u9 T3 Q
BL - Shunt susceptance, MVAR at 1.0 per unit voltage. (- = reactor) 9 N4 z! W( p( s" ?% g' w IA - Area number, 1-100& b+ d7 h5 N0 y; r4 u; l) c
VM - Voltage magnitude, per unit6 x4 p' i9 p" m: s
VA - Voltage angle, degrees. G% I! r! J/ Q# o# l# Y
NAME - Bus name, 8 characters, must be enclosed in quotes8 A7 a' t1 Y9 m9 V' l
BASKV - Base voltage, KV 7 E- q7 N. c" F. e ZONE - Loss zone, 1-9991 U F& w* h: r a& z) X& _8 ]/ {
Generator Data+ o0 P; W- u# J3 w! o* B
==============" Y" i2 Z( k) U0 z
Generator data records, terminated by a generator with an index of zero. ! y. M6 ^ @7 W6 ?! \3 f7 b' bI,ID,PG,QG,QT,QB,VS,IREG,MBASE,ZR,ZX,RT,XT,GTAP,STAT,RMPCT,PT,PB( r" h3 A/ h+ l
I - Bus number * u7 E% ^' W% o, \1 a* H8 MID - Machine identifier (0-9, A-Z) , W8 \1 p- y$ [2 h$ pPG - MW output # u' E5 k$ W* k8 B0 p4 P4 ~QG - MVAR output6 M! `8 F9 v- j9 T H9 a* a
QT - Max MVAR" [5 w& j5 |8 a" P4 \: J( x# V! y
QB - Min MVAR: f+ b3 Q" ^) U9 |! J7 T! r9 i" ]: r
VS - Voltage setpoint8 s% z- ^$ _" A3 s, A( k+ O
IREG - Remote controlled bus index (must be type 1), zero to control own1 _( I! [8 E( R0 [! F4 T9 Y0 ~
voltage, and must be zero for gen at swing bus 1 l# B! R0 i- l/ [- H7 S3 [MBASE - Total MVA base of this machine (or machines), defaults to system l6 _2 _+ }7 \ n6 q
MVA base.: r" d( b% ]4 i. @1 x2 g
ZR,ZX - Machine impedance, pu on MBASE+ P$ q3 [7 K; b2 O7 l* A8 j+ i
RT,XT - Step up transformer impedance, p.u. on MBASE 3 H; f; f8 t4 p: MGTAP - Step up transformer off nominal turns ratio 8 Y, z h4 n" R0 XSTAT - Machine status, 1 in service, 0 out of service . ^7 K+ ~" H- V/ y! @RMPCT - Percent of total VARS required to hold voltage at bus IREG! ^5 c+ ^% T9 g% ]
to come from bus I - for remote buses controlled by several generators g1 M3 \' N ^4 B' [
PT - Max MW # D/ y! N. E% i" S CPB - Min MW 0 z1 v0 y9 A E! M! ]9 JBranch Data* R7 F, [3 r# S. b
===========1 J0 k# u! ^6 m
Branch records, ending with a record with from bus of zero& @) f8 i+ U1 k7 n( d
I,J,CKT,R,X,B,RATEA,RATEB,RATEC,RATIO,ANGLE,GI,BI,GJ,BJ,ST ' k: a- A2 h: |2 WI - From bus number( ?% L# ~7 o6 @+ p+ ~- B) ]
J - To bus number + q. t( C* ]$ m/ ]/ aCKT - Circuit identifier (two character) not clear if integer or alpha " { T K# n. o% ^R - Resistance, per unit# x( N( {$ h; J( x$ l
X - Reactance, per unit) r% k. V: t7 R2 N# y0 @
B - Total line charging, per unit. i1 ?5 Z- @; b7 d: W8 S/ Q$ S* ^
RATEA - MVA rating A9 W/ X' O+ g$ ?( z) l
RATEB, RATEC - Higher MVA ratings 0 {- L2 r, l0 e L( N) `/ R& NRATIO - Transformer off nominal turns ratio + z/ F; z4 w( `3 c1 pANGLE - Transformer phase shift angle8 }! f* c' o7 Q# i( m6 y8 X9 f
GI,BI - Line shunt complex admittance for shunt at from end (I) bus, pu.- g3 }1 R- W9 U2 w) {* x
GJ,BJ - Line shunt complex admittance for shunt at to end (J) bus, pu. / U" U" `6 A* B3 ^" AST - Initial branch status, 1 - in service, 0 - out of service% S/ T' a8 W6 K! @( m) T
Transformer Adjustment Data' @( S1 H" l- W! g% i
===========================0 b* f( V7 Z2 F2 j- `9 X! d" x
Ends with record with from bus of zero$ `& e/ W0 N9 |" b3 u% a
I,J,CKT,ICONT,RMA,RMI,VMA,VMI,STEP,TABLE5 k0 P r; P0 {' j9 N# p
I - From bus number8 D1 W6 {5 }4 i
J - To bus number& {+ u0 m8 s0 t% B% s* j6 z
CKT - Circuit number + s, ?, Q$ U) x" R8 g. G5 `/ R0 R: |ICONT - Number of bus to control. If different from I or J, sign of ICONT ; K8 \) u- J$ ]! g* c: t- }4 w determines control. Positive sign, close to impedance (untapped) bus 1 j8 b* F* U A2 C$ Z5 z" C/ i: X of transformer. Negative sign, opposite.$ h S# b2 E/ }9 x4 h7 W. C
RMA - Upper limit of turns ratio or phase shift: R8 q2 W7 ~' p8 \$ d8 z
RMI - Lower limit of turns ratio or phase shift6 F* u, E+ B' U) C
VMA - Upper limit of controlled volts, MW or MVAR! x1 \1 V: R/ A# k+ I- \
VMI - Lower limit of controlled volts, MW or MVAR9 T$ N3 v4 P9 y5 h1 j }
STEP - Turns ratio step increment0 j& J- ~! K6 O2 I4 Z) z- |% P
TABLE - Zero, or number of a transformer impedance correction table 1-5 1 i8 L- W; k7 `# t1 N% r- T- t. pArea Interchange Data X( J5 U1 x: \: V" o$ O' s. L
=====================. ?$ u* Q3 ^: p6 P E" f: ]3 \* t& S
Ends with I of zero& \3 g2 `0 t4 p. G5 w
I,ISW,PDES,PTOL,'ARNAM' 3 Q7 y' g; C/ o" b" C( cI - Area number (1-100) * y, ?2 k8 V, g1 o0 x: ^8 z# X* sISW - Area interchange slack bus number; b; y6 c7 j) ]2 f( k }0 F: _
PDES - Desired net interchange, MW + = out.- q X/ }$ c, _$ K+ G
PTOL - Area interchange tolerance, MW" K p. _, M) o# r) o0 O7 r# t
ARNAM - Area name, 8 characters, enclosed in single quotes.4 t- ~( q8 o8 a3 W6 M4 o4 k
DC Line Data* j) t3 B( G# j) |" s- C
============ 8 Y; v' ?5 l: @& n* c/ sEnds with I of zero + B0 W* I* j) h3 x2 L1 s zEach DC line has three consecutive records 1 M3 J, Q- A. s" D' DI,MDC,RDC,SETVL,VSCHD,VCMOD,RCOMP,DELTI,METER & W5 b4 @- \0 }6 H. `: m" OIPR,NBR,ALFMAX,ALFMN,RCR,XCR,EBASR,TRR,TAPR,TPMXR,TPMNR,TSTPR5 } D( Q; ^3 n/ h9 |; j- D
IPI,NBI,GAMMX,GAMMN,RCI,XCI,EBASI,TRI,TAPI,TPMXI,TPMNI,TSTPI# p/ G$ I0 ?9 Z$ R
I - DC Line number F: A* I5 w1 U2 i8 b6 TMDC - Control mode 0 - blocked 1 - power 2 - current 4 U) C: @1 p& Q( NRDC - Resistance, ohms8 U' C/ e4 R% {, A, P
SETVL - Current or power demand' U* D1 t4 Q9 |, H( i$ e5 O
VSCHD - Scheduled compunded DC voltage, KV- p6 T1 E: o5 Y5 ?! [0 P* ]
VCMOD - Mode switch DC voltage, KV, switch to current control mode below this' r; k3 [# X: Q
RCOMP - Compounding resistance, ohms & e, i" }' y) [0 h' ^5 \, G" qDELTI - Current margin, per unit of desired current# a9 V8 Q2 Q4 @! n/ h0 M0 R+ q) W
METER - Metered end code, R - rectifier I - Inverter ) i5 q1 i; e6 c) u1 h: r: h" P* d8 ^IPR - Rectifier converter bus number2 }6 _- E. E$ t i. e* c) B! a
NBR - Number of birdges is series rectifier ; m E; {! A) z1 F& D5 R4 {ALFMAX - Maximum rectifier firing angle, degrees 2 C* p+ z+ v0 n s3 S3 SALFMN - Minimum rectifier firing angle, degrees, }) f3 ^1 v8 ^
RCR - Rectifier commutating transformer resistance, per bridge, ohms ' b+ \8 F: Q; \* NXCR - Rectifier commutating transformer reactance, per bridge, ohms % G& `: D3 L7 }+ a- B. mEBASR - Rectifier primary base AC volts, KV+ W( w3 x6 M9 p. ]( q4 }
TRR - Rectifier transformer ratio - v9 U* l4 u2 F7 h; i PTAPR - Rectifier tap setting |; a- ]2 v% f; {, y7 NTPMXR - Maximum rectifier tap setting* ]; u- d" G Y5 z6 i4 q
TPMNR - Minimum rectifier tap setting ( F& d0 ]5 i* c8 ^" l. R5 a' d# wTSTPR - Rectifier tap step |+ S3 Y: a9 t- `& u! zThird record contains inverter quantities corresponding to rectifier / X0 E6 Q7 E. Cquantities above.0 z/ K/ w: y8 ]; c# b9 A
Switch Shunt Data6 W: d4 i' o3 r' y' x" D5 J: V
=================/ f; M* b1 A$ x& m; c: X+ s
Ends with I = 0.0 N; q( F }1 ?0 C+ h: S
I,MODSW,VSWHI,VSWLO,SWREM,BINIT,N1,B1,N2,B2...N8,B8& U9 \4 D6 x* o) C& E2 O, N9 L
I - Bus number9 G0 Q6 Y& N! ?; j9 ~ T& j
MODSW - Mode 0 - fixed 1 - discrete 2 - continuous- Q# f! n0 R5 n: N) Q/ C; d3 C1 l
VSWHI - Desired voltage upper limit, per unit. h# m6 I' I( o9 `. m. w0 ?
VSWLO - Desired voltage lower limit, per unit" b4 \. Z6 s5 z5 D5 v; Q1 v
SWREM - Number of remote bus to control. 0 to control own bus. 1 j! i" e5 E3 u) @8 {1 |' @VDES - Desired voltage setpoint, per unit* y5 c7 t5 ]# _/ ?
BINIT - Initial switched shunt admittance, MVAR at 1.0 per unit volts4 |: v0 m8 g" Q9 H9 D' \
N1 - Number of steps for block 1, first 0 is end of blocks, l G4 R/ ^1 P; k6 H1 ~5 [
B1 - Admittance increment of block 1 in MVAR at 1.0 per unit volts.) X% b9 v1 l4 M: n0 o
N2, B2, etc, as N1, B1