本帖最后由 wanglei_86 于 2010-5-12 10:48 编辑 5 o) D- ^2 U3 Q7 O$ N7 W
6 g6 O8 f! n' {) ?- t* l% F
欢迎大家一起研究S变换 j$ N+ ~9 h3 [) {7 [2 [
" J X- H2 b) ~: Y0 p8 O6 r1 h
A new approach to voltage sag detection based on wavelet transform.pdf8 N& f, t3 q& \, q. G! I" x9 z v9 U
8 U" c1 Y# v. e' V5 u$ p
An expert system based on S-transform and neural network for automatic classification of power quality disturbances.pdf & j) [2 v! l( {! ^9 s2 C& F4 C5 d! v+ s4 I! b6 W5 B( K0 _! w
Detection and classification of power quality disturbances using S-transform and modular neural network.pdf: u8 S) a* F* X: j) j. R0 B
3 T7 B P1 `0 _) n+ Q. f; t( Z
IEEE Recommended Practice for Monitoring Electric Power Quality.pdf) C9 q# J5 I! J# k2 }2 ?) W# Y- G3 D
: S. ^% {2 Z7 e
Localization of the Complex SpectrumThe S Transform.pdf% R# j' T3 U9 f- P4 j( U
& O0 z5 z/ H5 f$ C" J9 I; @
Pattern recognition of power signal disturbances using S Transform and TT Transfom.pdf; o3 ~: d" G0 L' v9 @# ]" |" H# p7 L
i5 n% O3 c k8 T" x( s# [4 wPower quality disturbance classification utilizing S-transform and binary feature matrix method.pdf / g3 Y# V' }. d# N( k" ?) O+ ]* N ( ^( d- p. p' C, [9 t! a! |8 ^! M/ jRule based system for power quality disturbance classification incorporating S-transform features.pdf; B) @) w8 E# W' R; |% h! q& S
- J+ d" u& Z% S1 L. v* y6 [& G9 cShort duration disturbance classifying based on S-transform maximum similarity.pdf