设为首页收藏本站|繁體中文 快速切换版块

 找回密码
 立即加入
搜索
查看: 10823|回复: 65

两本微网的书

   火... [复制链接]

该用户从未签到

尚未签到

发表于 2009-6-16 16:12:19 | 显示全部楼层 |阅读模式
论文文献
标题: 两本微网的书
作者: FELIX A. FARRET, M. GODOY SIMO˜ ES, James Larminie, Andrew Dicks(估计写了也没啥用)
所属专业方向: 电力系统及其自动化
摘要: 两本书:
1、Integration of Alternative Sources of Energy.pdf
2、fuel cell system explained.pdf
关键字:
来源: 互联网

马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!

您需要 登录 才可以下载或查看,没有账号?立即加入

×
本帖最后由 bird841011 于 2009-6-16 16:39 编辑 0 T7 b- z7 A5 o8 u+ L
% q4 N$ `8 K, X0 V/ C
两本书:% W1 L# r- v9 z! _0 y
1、Integration of Alternative Sources of Energy.pdf8 [- g* @7 j( C, I
IEEE press" n" W7 q+ u, s" e( f
简要目录6 R8 L4 i9 y9 I& O3 @
1 ALTERNATIVE SOURCES OF ENERGY 10 o. f  w) `' M, H. o; `' g
2 PRINCIPLES OF THERMODYNAMICS 28
- R! v+ j* L' G# T/ A3 HYDROELECTRIC POWER PLANTS 57
+ S) R2 e0 k. Z9 ]5 W4 WIND POWER PLANTS 84
4 \8 y$ B8 N9 U; @. z5 THERMOSOLAR POWER PLANTS 112
2 G7 [2 I- e# C! y+ s) k: z& n3 @) l6 PHOTOVOLTAIC POWER PLANTS 129& b& A2 `, C) W- d" b
7 POWER PLANTS WITH FUEL CELLS 1599 p$ X+ ]% f5 P. N, ]# ?3 s9 Z
8 BIOMASS-POWERED MICROPLANTS 1981 A7 ?. k" o, W8 m/ ?- f
9 MICROTURBINES 2153 A) o. D5 E$ l" F
10 INDUCTION GENERATORS 233
, M! O3 j: i+ s  z& d$ V11 STORAGE SYSTEMS 262/ S9 A1 E) c4 \% a4 T' U6 X
12 INTEGRATION OF ALTERNATIVE SOURCES
& Q0 v2 n  [' ?3 _' _OF ENERGY 301
4 K% m! O& t" k. U! T13 DISTRIBUTED GENERATION 3335 L7 [( c7 A7 Q3 \  U& C. T  T( v
14 INTERCONNECTION OF ALTERNATIVE ENERGY1 ?6 d5 M( Y9 {8 x5 P: y4 r
SOURCES WITH THE GRID 354; x1 Q9 s2 I+ d( N
15 MICROPOWER SYSTEM MODELING WITH HOMER 379: d/ E- c! v5 `* ~9 t; _
Glossary 416
9 B' [8 K/ h; \& F* }APPENDIX A: DIESEL POWER PLANTS 4198 X# l. K) o" R% K: }6 \
APPENDIX B: GEOTHERMAL ENERGY 431
; i/ g" N& n& X& L& A+ k7 kAPPENDIX C: THE STIRLING ENGINE 438
1 o- G1 t: J+ y
+ b4 I" u6 P2 _
- L3 P! \5 q8 i2 _; y; `1 ?+ ~" b/ ?7 T& K0 v
2、fuel cell system explained.pdf0 m. V: u1 C( o# ]( v9 h
Wiley press+ C. b8 y0 ?/ G0 K( D) o* K( c, `  k
简要目录! i% i5 ?7 A* `- q5 f
1. Introduction ............................................................................. 1" I/ y1 P% S/ c! D; j
2. Efficiency and Open Circuit Voltage ..................................... 25* P6 u0 y6 \+ ]
3. Operational Fuel Cell Voltages .............................................. 45% x" A0 `0 L! F) I4 n1 h; Q8 t
4. Proton Exchange Membrane Fuel Cells ................................ 67
3 D6 r" Z6 @! K" U5. Alkaline Electrolyte Fuel Cells ............................................... 1215 i) ?% g# D) ^( p( [8 [
6. Direct Methanol Fuel Cells ..................................................... 141$ }% S8 Q; ]0 S3 O+ D  X
7. Medium and High Temperature Fuel Cells ........................... 163- }1 E& D3 n6 k! a9 J- w( k( {( T
8. Fuelling Fuel Cells .................................................................. 229- \8 m3 x& w1 }! O) X$ U3 j
9. Compressors, Turbines, Ejectors, Fans, Blowers, and
* a' E6 ]) n+ [- h: u10. Delivering Fuel Cell Power ..................................................... 3310 s9 `9 G2 N" ~' x! E
11. Fuel Cell Systems Analyzed .................................................. 369
$ o+ V& W, O$ k3 @. ~. HAppendix 1. Change in Molar Gibbs Free Energy Calculations ......... 391. L$ j9 m9 |' ]  o  S. f# W6 N& j2 @
Appendix 2. Useful Fuel Cell Equations ............................................. 395

microgrid_2.rar

8.8 MB, 下载次数: 201, 下载积分: 威望 -2 点, 学分 -5 点

"真诚赞赏,手留余香"
还没有人打赏,支持一下
楼主热帖
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

该用户从未签到

尚未签到

发表于 2009-6-16 16:21:45 | 显示全部楼层
不错 但能不能现简单介绍下传的东西

评分

参与人数 1威望 +1 收起 理由
201110301045 + 1 完成评分任务~

查看全部评分

"真诚赞赏,手留余香"
还没有人打赏,支持一下
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    开心
    2016-3-17 22:07
  • 签到天数: 2 天

    连续签到: 1 天

    [LV.1]初来乍到

    累计签到:2 天
    连续签到:1 天
    发表于 2009-6-16 16:44:17 | 显示全部楼层
    刚下下来 先把目录贴出来
    3 \6 P* @: c$ _  @- g2 cFuel Cell Systems Explained
    5 N  z, o, h/ H( D4 v+ x5 zSecond Edition 2003出版的
    ; a+ \+ L) ~: r: r) d! P第一版是2000年1月出版的
    8 J  C) y/ l( t* Q1 e* u下面是目录
    " U5 p: l- F, v1 r" pContents
    ) X; R  V9 w& S) i5 fPreface   ............................................................................................   xiii : u9 c6 l, v! @6 w
    Foreword to the First Edition   ...........................................................   xv
      i/ ~* v. ?7 j: X  ^/ O5 u! }6 RAcknowledgements   .........................................................................   xvii 2 A' K6 l6 [: y
    Abbreviations  ...................................................................................   xix
    ; m- O# Q5 N3 FSymbols  ...........................................................................................   xxi
    4 u  t$ X4 y5 b5 X0 i# l1. Introduction   .............................................................................   1
    ' o- y# d$ l2 e; F; u1.1  Hydrogen Fuel Cells – Basic Principles  .....................................   1
    2 }2 g3 [" T3 {! i' ]1.2  What Limits the Current?   ...........................................................   5
    . O8 A7 H5 x# h8 |/ V) |) W0 V( ?1.3  Connecting Cells in Series – the Bipolar Plate   ..........................   6
    5 }" O6 d, m+ d6 c+ k8 U1.4  Gas Supply and Cooling   ............................................................   10
    / }" t/ ~  ^# b! e$ U$ f1.5  Fuel Cell Types  ..........................................................................   14 & f4 E0 O! ~1 M: w' |7 ]6 R
    1.6  Other Cells – Some Fuel Cells, Some Not   ................................   16   D+ f: C( m, e
    1.6.1  Biological Fuel Cells   ......................................................   17 * D; ?% {; y7 I7 m1 F3 c
    1.6.2  Metal/Air Cells  ................................................................   17
    9 i3 |8 q$ C) I6 X) O- h6 T5 K' A1.6.3  Redox Flow Cells or Regenerative Fuel Cells   ...............   18
    ( Q6 `) M/ t6 s1 W# q2 ]* `1.7  Other Parts of a Fuel Cell System   .............................................   19 % _* d8 y* Q2 n. M
    1.8  Figures Used to Compare Systems  ...........................................   21 6 I9 z) D: x& s2 F
    1.9  Advantages and Applications   ....................................................   22 1 A, @: \& U1 s2 f
    References   .........................................................................................   24 7 L& I5 n+ ?& j3 q2 p& I
    2.  Efficiency and Open Circuit Voltage   .....................................   25
    ) C$ a! G/ T# o' o$ `# ^4 p, m2.1  Energy and the EMF of the Hydrogen Fuel Cell   ........................   25 4 J- d. A& ?$ J. |8 t* g
    2.2  The Open Circuit Voltage of Other Fuel Cells and Batteries   .....   30 7 S$ v# x: x8 L0 r# }* Z
    2.3  Efficiency and Efficiency Limits   .................................................   31 % B4 P( I7 v5 Y% H7 \
    2.4  Efficiency and the Fuel Cell Voltage   ..........................................   34
    1 q% Y" c8 k2 Y& m1 g2.5  The Effect of Pressure and Gas Concentration   .........................   35 + C" s  k$ ~- f$ \
    2.5.1  The Nernst Equation   ......................................................   35
    ) I+ C" u7 Q" ?5 c8 D( S# G2.5.2  Hydrogen Partial Pressure  .............................................   38 4 p1 Q% }; N( @0 f
    2.5.3  Fuel and Oxidant Utilization   ...........................................   39
    ! A+ \; U. ~0 @8 D2 X. U2.5.4  System Pressure  ............................................................   40 : s& G1 B/ ~# z" X6 c
    2.5.5  An Application – Blood Alcohol Measurement   ...............   41 ! ?# C6 W! h5 B2 X. F$ k: m6 N% G0 R7 P
    2.6 Summary  ...................................................................................   42
    , X9 V3 c% h3 e( s& ^4 L1 UReferences   .........................................................................................   43 ; [6 K1 f+ f" h" @: H
    3.  Operational Fuel Cell Voltages   ..............................................   45
    / i$ p. l. X# ^2 y- g3.1 Introduction  ................................................................................   45
    * `: H9 J& K4 G0 @) K! e3.2 Terminology  ...............................................................................   47 5 s0 }, i# z1 d: D: v+ M
    3.3  Fuel Cell Irreversibilities – Causes of Voltage Drop   ..................   47
    1 N" X8 G- G) |7 ~$ q0 {* ?3.4  Activation Losses  .......................................................................   48 1 K, v& o1 P/ T4 l. R: @1 U8 T2 D
    3.4.1  The Tafel Equation   ........................................................   48
    : j# H7 X! V( s* l3.4.2  The Constants in the Tafel Equation  ..............................   49
    # E# D0 J* n7 H, T3.4.3  Reducing the Activation Overvoltage  .............................   52
    6 X, p: b7 y( x' w3.4.4  Summary of Activation Overvoltage  ...............................   53 * i( E' z3 U4 p5 |1 X; E
    3.5  Fuel Crossover and Internal Currents   .......................................   53 5 _; x6 s. x* p' A
    3.6  Ohmic Losses   ............................................................................   56
    ! b. Z# O: ]6 i: c! v% U% H( ^3.7  Mass Transport or Concentration Losses  ..................................   57
    1 C. i! z* u+ w* Z7 X! H  u3.8  Combining the Irreversibilities   ...................................................   59 $ u' j0 P) C4 r+ }1 b
    3.9  The Charge Double Layer   .........................................................   61 8 T4 N: u2 C+ k" k
    3.10  Distinguishing the Different Irreversibilities  ................................   63 4 o$ R  p6 v% o: K% \. b; i0 _8 w" v
    References   .........................................................................................   66
    # T& v2 b: z7 e8 u3 V  B( ]4.  Proton Exchange Membrane Fuel Cells  ................................   67 0 F% A6 S3 }/ L+ V; ]' w* N1 [, k
    4.1 Overview  ....................................................................................   67
    : G6 Q- W, H2 [6 q4.2  How the Polymer Electrolyte Works   ..........................................   69
    ' G( {. c: ~+ y  q8 U. E9 |4.3  Electrodes and Electrode Structure   ...........................................   72 3 J( @) p% w; A+ L! B: ~- u8 n: q* ]
    4.4  Water Management in the PEMFC  ............................................   75
    ; n7 d1 H( ?8 w/ E8 {, v% K4.4.1  Overview of the Problem  ................................................   75   I; G5 X% |  }' L7 _" |' ]& ?5 B1 {
    4.4.2  Airflow and Water Evaporation   ......................................   76
    0 P( u8 P4 H+ F. b  T/ F4.4.3  Humidity of PEMFC Air   ..................................................   80 ( |  B4 F4 \! V( P3 P
    4.4.4  Running PEM Fuel Cells without Extra Humidification   ..   83
    ) J9 T6 V& u, t* M9 h8 e& g4.4.5  External Humidification – Principles  ...............................   85 , \  \' d1 o+ R' N) ?
    4.4.6  External Humidification – Methods   ................................   87 5 e9 y( m! R; Y5 }
    4.5  PEM Fuel Cell Cooling and Air Supply   ......................................   90 : M0 C% g, E9 e1 L7 G2 S) I
    4.5.1  Cooling Using the Cathode Air Supply  ...........................   90
    " n$ C' z0 `. z& ^) g4.5.2  Separate Reactant and Cooling Air   ...............................   91 ! i0 A" g' [- l; B7 B  h6 d; I2 N
    4.5.3  Water Cooling of PEM Fuel Cells   ..................................   93
    , A1 \$ k7 r; v1 S, ]4.6  PEM Fuel Cell Connection – the Bipolar Plate   ..........................   94 # K2 y5 e7 l4 M8 _
    4.6.1 Introduction  ....................................................................   94
    7 E% [+ L# c0 t) w: S4.6.2  Flow Field Patterns on the Bipolar Plates   ......................   94 ' D* j  F4 Y! n: k
    4.6.3  Making Bipolar Plates for PEM Fuel Cells   .....................   96
    5 x9 T! _1 Q( _5 s* G; {4.6.4  Other Topologies   ...........................................................   100 " C1 r7 u% F2 n% @4 y7 b& o
    4.7  Operating Pressure   ...................................................................   102 1 j" N9 ^) P) i6 L' j
    4.7.1  Outline of the Problem   ...................................................   102 ) \) [( O! i9 U
    4.7.2  Simple Quantitative Cost/Benefit Analysis of Higher 8 J7 z/ y( {: _; `
    Operating Pressures   ......................................................   103
    2 E7 X/ G/ Q# E: c1 w4.7.3  Other Factors Affecting Choice of Pressure   ..................   108 : z' I& R; U& H# R- U* E2 D
    4.8  Reactant Composition   ...............................................................   110 9 X0 Z9 h& S3 R+ G6 `# F1 P4 ?
    4.8.1  Carbon Monoxide Poisoning  ..........................................   110 ( s# Z) N3 M/ |: L7 X4 X
    4.8.2  Methanol and Other Liquid Fuels  ...................................   111 ' ~' ^1 w2 l5 a- `
    4.8.3  Using Pure Oxygen in Place of Air  .................................   111   f) o2 ]' U! C5 ~
    4.9  Example Systems   ......................................................................   112 & h" o6 S. U% J1 W3 i
    4.9.1  Small 12-W System   .......................................................   112 3 `& V& A% |1 u( I* Y! e; _6 M
    4.9.2  Medium 2-kW System  ....................................................   114
    : Y, u+ q. ]" ~+ f$ u" Y9 k9 j5 v  O4.9.3  205-kW Fuel Cell Engine   ...............................................   117
    8 g' c; m5 |# D5 q* f! O" ]References   .........................................................................................   118
    * Y7 [$ g( Y5 W6 @/ D7 C5.  Alkaline Electrolyte Fuel Cells   ...............................................   121 ' W& `6 }# o7 ]6 D
    5.1  Historical Background and Overview  .........................................   121
    : d: V4 W9 q  A% z1 E2 V8 @# L5.1.1  Basic Principles   .............................................................   121 ! ^, D9 g) q9 t. v( c) G
    5.1.2  Historical Importance   .....................................................   121 2 K. P6 u6 k" z, L% t0 G
    5.1.3  Main Advantages   ...........................................................   122
    % A/ t$ q# j. ^0 i- M  W* g/ N, ]5.2  Types of Alkaline Electrolyte Fuel Cell   ......................................   124 ! M7 h+ Y$ |( |* t
    5.2.1  Mobile Electrolyte   ..........................................................   124
    , O- I% m* `- ]5.2.2  Static Electrolyte Alkaline Fuel Cells  ..............................   127
    # H# j: K+ \$ [( D& n5.2.3  Dissolved Fuel Alkaline Fuel Cells  .................................   129
    9 p6 ?' _" ?7 }6 l5.3  Operating Pressure and Temperature   .......................................   132 4 p  p( t, a+ k4 j, L
    5.4  Electrodes for Alkaline Electrolyte Fuel Cells   ............................   134 . n' @* x6 G) r
    5.4.1 Introduction  ....................................................................   134 . M7 B! G5 I2 F: h, x+ [' @
    5.4.2  Sintered Nickel Powder   .................................................   134
    - y  d& P7 {- J: a+ w! r, t" Z7 r- O5.4.3 Raney Metals  .................................................................   135 3 |, a$ n  r: P0 ^8 O
    5.4.4  Rolled Electrodes  ...........................................................   135 1 W9 C8 U- _, J5 I
    5.5  Cell Interconnections   .................................................................   137 8 G" @4 f+ c; T2 `/ p& |
    5.6  Problems and Development   ......................................................   137 # K' \% k! b# r
    References   .........................................................................................   138
    " |# U, x" S5 Y( P6.  Direct Methanol Fuel Cells   .....................................................   141 - z& g. q4 I+ x5 G0 Z$ a, J
    6.1 Introduction  ................................................................................  141 " x) n+ U/ m7 R9 S- R+ A+ p
    6.2  Anode Reaction and Catalysts   ..................................................   143
    * \; @8 e( c5 Z2 g6.2.1  Overall DMFC Reaction   .................................................   143 - s1 o, ^2 g8 l
    6.2.2  Anode Reactions in the Alkaline DMFC  .........................   144
    / g- g3 x; T) f! t0 c) |6.2.3  Anode Reactions in the PEM Direct Methanol FC   .........   144 4 j2 Z+ u  K: n) f. J" w
    6.2.4  Anode Fuel Feed   ...........................................................   146 0 f1 }+ z; c8 g  Q* S
    6.2.5  Anode Catalysts  .............................................................   147 , g- _6 i+ L! S' X4 d
    6.3  Electrolyte and Fuel Crossover   .................................................   148
    + C9 Z7 d, f7 h+ Q2 U1 x6.3.1  How Fuel Crossover Occurs   ..........................................   148
    0 q$ C% w4 V( S0 Q: J6.3.2  Standard Techniques for Reducing Fuel Crossover   ......   149
    $ R+ }4 F; h3 e3 N6.3.3  Fuel Crossover Techniques in Development   .................   150 / R7 |) H# j  w
    6.4  Cathode Reactions and Catalysts   .............................................   151 ! t, I( @3 L6 A; Z
    6.5  Methanol Production, Storage, and Safety   ................................   152 - }6 m+ o9 X$ @* z: S
    6.5.1  Methanol Production   ......................................................   152 " a- i$ q1 A& P2 Z& t7 @- y
    6.5.2  Methanol Safety   .............................................................   153 ; i3 Q  r. O7 d+ g& ?
    6.5.3  Methanol Compared to Ethanol   .....................................   155 ; J# K* e( Y# j  F" H; C
    6.5.4  Methanol Storage   ..........................................................   156
    3 v' |% q6 J' m6.6  Direct Methanol Fuel Cell Applications   ......................................   157
    , x1 n, z% L8 J! ?References   .........................................................................................   160 ; f8 B! ~# M' d4 M' A+ u1 s
    7.  Medium and High Temperature Fuel Cells   ...........................   163 , v2 V3 R* {- {! @- }" d! ~& e% d& H
    7.1 Introduction  ................................................................................  163 ( d' w! I' u1 H4 |. l7 N! |
    7.2  Common Features   .....................................................................   165
    ! P, R6 q, _8 c4 |* C/ l7.2.1  An Introduction to Fuel Reforming   .................................   165 1 A  K  n' K1 y1 o0 U
    7.2.2  Fuel Utilization   ...............................................................   166 2 Z- x4 M: ]% s3 F% \4 j$ W
    7.2.3  Bottoming Cycles   ...........................................................   168
    " m2 W9 O+ o4 _7.2.4  The Use of Heat Exchangers – Exergy and Pinch 7 ?/ b- R& c$ o7 c
    Technology   ....................................................................   174 ' l6 G9 I7 R3 I( q
    7.3  The Phosphoric Acid Fuel Cell (PAFC)   .....................................   177
    4 v0 `# W' c- z7.3.1  How It Works   .................................................................   177
    ( A9 J3 b2 R2 D; }" W3 e0 y4 i7.3.2  Performance of the PAFC  ..............................................   182
      F0 t  i( `  o- S+ H) m7.3.3  Recent Developments in PAFC   .....................................   184
    ' w6 @9 Q6 w: M6 ^7 ?: e# ?1 Y7.4  The Molten Carbonate Fuel Cell (MCFC)   ..................................   187
    / X) ]: B. P* T9 @+ M1 ^+ m# O' M+ `7.4.1  How It Works   .................................................................   187 " y/ T- r! l& G$ ]
    7.4.2  Implications of Using a Molten Carbonate Electrolyte   ...   190 + X% X- Z* M- `3 {+ E$ _# r- ?
    7.4.3  Cell Components in the MCFC   ......................................   190
    , A, Z7 U: I2 c* S0 k7.4.4  Stack Configuration and Sealing  ....................................   195 ; H# V- @4 ^6 W& ]; ?1 v
    7.4.5  Internal Reforming   .........................................................   196
    0 N% X' I" i- l. b( R9 E# d4 f9 ]7.4.6  Performance of MCFCS  .................................................   198
    # L9 v5 ~6 P3 L- {% h* V" c7.4.7  Practical MCFC Systems   ...............................................   202
    $ {# p1 T) D5 p& E% [& D. |7.5  The Solid Oxide Fuel Cell   ..........................................................   207   c0 H5 q9 i. E! f' s' [7 D# ^; T% h6 Z( }
    7.5.1  How It Works   .................................................................   207
    1 w6 o* H8 Q) i( l, Y7.5.2 SOFC Components  ........................................................   209 ) L& k/ z( n8 }+ v3 }
    7.5.3  Practical Design and Stacking Arrangements for the , Y' S% \! H* t9 A! _; Z
    SOFC   .............................................................................   213 ; u6 o; U% k: Z5 A) F$ v
    7.5.4  SOFC Performance   .......................................................   220
    * ^+ \0 D* t) G8 `9 m* X7.5.5  SOFC Combined Cycles, Novel System Designs and
    5 i$ Y/ w0 |0 N+ l. ^) QHybrid Systems  ..............................................................   221 2 i! j4 ?3 _3 X3 y
    7.5.6  Intermediate Temperature SOFCs  .................................   225
    2 @1 H( L2 y- x: E! F( {References   .........................................................................................   226
    5 `; B4 S  T0 V. R8.  Fuelling Fuel Cells   ..................................................................   229
    & g# W. {8 q9 L" S' S+ b/ A8.1 Introduction  ................................................................................  229 2 v0 e7 K. z3 M, T0 r. H
    8.2  Fossil Fuels   ...............................................................................   232
    / S5 G2 U! t/ S7 Y8 b- {9 C8.2.1 Petroleum  ......................................................................   232
    : Y  r# g$ I! }1 U8.2.2  Petroleum in Mixtures: Tar Sands, Oil Shales, Gas 3 C1 q$ R" G+ ]8 R2 s$ ]6 S! V6 G' u) I, C
    Hydrates, and LPG   ........................................................   233
    ( y* y! m- b5 r$ g. E" I8.2.3  Coal and Coal Gases  .....................................................   234 8 p  K7 z) K/ y/ b4 M! M$ A! c
    8.2.4  Natural Gas  ....................................................................   235
    % |2 G% _# S% X3 c8.3 Bio-Fuels  ...................................................................................  236 # l0 v  @2 h7 S* a" Z  L
    8.4  The Basics of Fuel Processing   ..................................................   238 ' v7 N3 D+ k+ ~5 _' U; n; O2 d
    8.4.1  Fuel Cell Requirements   .................................................   238 1 p) [! y' H4 a1 j% C, s- J2 N
    8.4.2 Desulphurization  ............................................................   239 % f8 X: A( A: G2 J
    8.4.3  Steam Reforming   ...........................................................   241 / k- t$ v2 c' H1 u
    8.4.4  Carbon Formation and Pre-Reforming  ...........................   244 . I# ]- h/ x: m( [
    8.4.5  Internal Reforming   .........................................................   246 $ l( ]0 ~( W4 X& l* s7 g
    8.4.6  Direct Hydrocarbon Oxidation  ........................................   248
    % G) u4 E/ O% |- h$ f8.4.7  Partial Oxidation and Autothermal Reforming  ................   248 " y8 U9 _7 Q* z  \3 V; F" L- Z
    8.4.8  Hydrogen Generation by Pyrolysis or Thermal
    2 e  [, C. _1 S; c" M$ R9 x石皮解ing of Hydrocarbons   .............................................   250 8 w5 P' d# \5 N1 C: a, H
    8.4.9  Further Fuel Processing – Carbon Monoxide Removal   .   250
    $ t0 S- d- j  Q! h! {, z& I0 G5 ^8.5  Practical Fuel Processing – Stationary Applications  ..................   252
    / x2 h7 L0 ^  S  G0 O. Y, K8.5.1  Conventional Industrial Steam Reforming   .....................   252 ( l! Y/ L" _+ j/ }- O0 t- m
    8.5.2  System Designs for Natural Gas Fed PEMFC and * w2 y% Y$ r2 Z# e; b! ?
    PAFC Plants with Steam Reformers  ..............................   253 ! G% Q7 K" R% A+ x4 b
    8.5.3  Reformer and Partial Oxidation Designs   .......................   257
    3 E0 p, i7 W5 \5 V' u  j8.6  Practical Fuel Processing – Mobile Applications   .......................   263 " s& k! I/ h; X' J: m; P* B- L
    8.6.1  General Issues  ...............................................................   263 1 I" a& h' ]  J: l* G! j
    8.6.2  Methanol Reforming for Vehicles  ...................................   264 # U# D2 Y% _5 ?+ O, V; X
    8.6.3  Micro-Scale Methanol Reactors  .....................................   267 9 \! d; [" H. J
    8.6.4  Gasoline Reforming   .......................................................   269 9 E& C6 f% i3 B. L8 e# R( k
    8.7 Electrolysers  ..............................................................................  270 3 W3 ]) ?  P  U6 z+ V& T
    8.7.1  Operation of Electrolysers   .............................................   270 ( z* U! }4 i# I5 P  G. v9 f
    8.7.2  Applications of Electrolysers   ..........................................   272
    / P# ?( N; x; ^5 T* O/ f, \& Z8.7.3  Electrolyser Efficiency  ....................................................   272
    ; X, d& @8 h1 D, `( I8.7.4  Generating at High Pressure   .........................................   273 ( e3 ~) f' r9 i+ l; Y
    8.7.5 Photo-Electrolysis  ..........................................................   275
    / b& A* O2 l5 G8 t8.8  Biological Production of Hydrogen   ............................................   275 9 k0 s, F( F# W4 h( v
    8.8.1 Introduction  ....................................................................   275
    ) X: d8 a& K: _8.8.2 Photosynthesis  ..............................................................   276 * Z+ v/ F0 {7 k" h; Z" }' l( N
    8.8.3  Hydrogen Production by Digestion Processes  ...............   278 ; }  H4 Q1 g7 C& L, m% S
    8.9  Hydrogen Storage I – Storage as Hydrogen   .............................   279 ) Y7 `  k, ?: V/ f, C
    8.9.1  Introduction to the Problem  ............................................   279 ! o) N; v$ L# z; A
    8.9.2 Safety  .............................................................................   280
    6 i! O; h1 Q( M" G# h8 |8.9.3  The Storage of Hydrogen as a Compressed Gas  ..........   282 / ]+ [6 P/ E6 u. @. @
    8.9.4  Storage of Hydrogen as a Liquid   ...................................   284 7 m& v% n& [5 T% r+ {; s$ D- C
    8.9.5  Reversible Metal Hydride Hydrogen Stores  ...................   286 1 S# r9 J8 n5 A" |  h
    8.9.6  Carbon Nanofibres  .........................................................   289 ( u' f! b! }; ?; b. D
    8.9.7  Storage Methods Compared  ..........................................   291
    ; c8 a+ W2 c' t% H+ ~0 d8.10  Hydrogen Storage II – Chemical Methods  .................................   293 9 b# L/ u  T6 N5 T$ c% X: u
    8.10.1 Introduction  ....................................................................   293 6 ~0 r5 h- c% m. u* F
    8.10.2 Methanol  ........................................................................   293 2 T0 H$ k; M/ Z0 k9 n0 _
    8.10.3  Alkali Metal Hydrides   .....................................................   295 8 @, \; ]' F; T
    8.10.4  Sodium Borohydride   ......................................................   297 , s$ u+ L) X9 ~9 X) Q3 j
    8.10.5 Ammonia  ........................................................................   301 1 b" N8 i8 ]# i/ g1 I
    8.10.6  Storage Methods Compared  ..........................................   304
    9 I" B% k+ J( P# J) D9 L7 m: wReferences   .........................................................................................   305
    ' J& ~( W+ ~: M8 h& f, m9.  Compressors, Turbines, Ejectors, Fans, Blowers, and
      G) D2 ]( [! I  QPumps  ......................................................................................   309
    5 I/ j, B2 m7 w% T0 u, S# g1 {0 G9.1 Introduction  ................................................................................  309 - c2 x% H4 ^; |0 l1 d) p$ l9 ]" x% [
    9.2  Compressors – Types Used   ......................................................   310
    ( I* ?! ]1 o, R7 I( o* [9.3  Compressor Efficiency  ...............................................................   312
    ; G" O( f( N! `9.4  Compressor Power   ....................................................................   314 $ r" S1 d; }) [+ L* n+ m8 y/ a# q
    9.5  Compressor Performance Charts   ..............................................   315
    % M: p. Z; e- C' w9.6  Performance Charts for Centrifugal Compressors  .....................   318 . }: ^+ ]% Y7 Z0 M
    9.7  Compressor Selection – Practical Issues   ..................................   320
    # ]; P* P3 g; l+ u, {; |. y$ D7 U- f9.8 Turbines  .....................................................................................  321 $ h2 }9 D( N+ M+ [( w
    9.9 Turbochargers  ...........................................................................  325
    * M8 V9 E3 X& o) y9.10  Ejector Circulators   .....................................................................   326 3 w5 X9 H' D8 ^2 T5 a
    9.11  Fans and Blowers   ......................................................................   327
    9 ?/ W9 m; A2 t- Y6 V9.12 Membrane/Diaphragm Pumps  ...................................................   328
      Z# u/ |  e' }0 dReferences   .........................................................................................   330
    9 |; z% J* B: t2 [* Z$ |10.  Delivering Fuel Cell Power  .....................................................   331 . ]/ g- O6 y0 u9 F
    10.1 Introduction  ................................................................................   331
    ' D8 a$ A( n  J1 B3 M, G! L10.2  DC Regulation and Voltage Conversion   ....................................   332 * k+ j/ B' h1 D- P3 K0 p- p) u7 I
    10.2.1  Switching Devices  ..........................................................   332 " T* n2 i' K1 M# j/ S8 O
    10.2.2  Switching Regulators   .....................................................   334 7 Q. X$ p7 W- w( h4 [2 M
    10.3 Inverters  .....................................................................................   339
    3 F3 v6 ]' T5 ?10.3.1  Single Phase  ..................................................................   339
    ( f, f: q7 `) ^1 B10.3.2  Three Phase   ..................................................................   344 , d/ U; x1 b$ h0 i2 M" m- C" }. J
    10.3.3  Regulatory Issues and Tariffs   ........................................   346
    % Y- o/ e4 F. z. M10.3.4  Power Factor Correction   ................................................   348 6 T6 V! B# ]  d( o1 ^7 U
    10.4  Electric Motors   ...........................................................................   349 $ k& Q1 v* K" T: W: ~
    10.4.1  General Points   ...............................................................   349 & p3 K% k, a! v. S: @
    10.4.2  The Induction Motor   .......................................................   350 " G9 W4 L. k7 g4 x1 O+ d
    10.4.3  The Brushless DC Motor  ................................................   352
    5 i6 k& l% O2 s- ]# f  P10.4.4  Switched Reluctance Motors   .........................................   355 " E# f; T: i' O' M1 _5 a
    10.4.5  Motors Efficiency   ...........................................................   357
    ) h9 A! M/ t$ t5 u! y" f! P10.4.6  Motor Mass   ....................................................................   361 8 ]# Q$ k& Z8 P2 ?+ [
    10.5  Fuel Cell/Battery or Capacitor Hybrid Systems   .........................   362 . K& Q2 T0 ^6 q' `+ G0 H- n
    References   .........................................................................................   367
    ; R8 a& O& I8 s& q! I( X4 D11.  Fuel Cell Systems Analyzed   ..................................................   369
    $ J7 s+ [6 V* T( D4 m' [, m8 t11.1 Introduction  ................................................................................   369 + J8 k% ]  q" C3 F
    11.2  Energy Systems   ........................................................................   370 : a$ B+ u$ p5 `8 g
    11.3 Well-To-Wheels Analysis  ...........................................................   371 ; |( }' H: r& e+ {
    11.3.1  Importance of Well-to-Wheels Analysis   .........................   371 3 b4 s( Z1 M) k  A6 _  D6 ^& N
    11.3.2 Well-to-Tank Analysis   ....................................................   372
    , l. A1 J6 K! N. U11.3.3  Main Conclusions of the GM Well-to-Wheels Study   ......   374 ' \- d. ?! C4 z( U
    11.4  Power-Train or Drive-Train Analysis  ..........................................   375
    & k6 s# G- d; P2 o6 }- V% X: L11.5  Example System I – PEMFC Powered Bus  ...............................   377
    $ y+ s- \$ n* ~6 r& p) J  A11.6  Example System II – Stationary Natural Gas Fuelled System  ...   382
    : Q) q! I; ?: ~% H! ?11.6.1 Introduction  ....................................................................   382
    0 A- A1 Q! g. |  [; x9 c5 |11.6.2  Flow Sheet and Conceptual Systems Designs   ..............   382 5 V+ ]$ c! L7 I& E/ h
    11.6.3  Detailed Engineering Designs   .......................................   386 , y6 _) j2 W1 {, u1 r, C+ `& U
    11.6.4  Further Systems Analysis   ..............................................   387 * E3 e+ F! J: A. z
    11.7  Closing Remarks   .......................................................................   388 / Z# z) h; U. l4 i
    References   .........................................................................................   389
    % \5 x0 Q' E2 M9 A& E9 l* rAppendices 6 n5 A; o# F4 l  B" ]
    Appendix 1. Change in Molar Gibbs Free Energy Calculations  .........   391 7 e$ e) {3 q6 b1 E; k5 d# F  o+ g/ t
    A1.1 Hydrogen Fuel Cell   ........................................................   391 3 L- W9 \% G' a2 `- K$ o6 \
    A1.2 The Carbon Monoxide Fuel Cell   ....................................   393 ! L+ r1 T# e& Q& M9 }. O, X5 ^9 l2 ?+ e9 A
    References   .............................................................................   394 % m& }+ [5 `8 V4 v3 [; a0 X) U! H
    Appendix 2. Useful Fuel Cell Equations  .............................................   395
    % U, r3 m. ?" i5 TA2.1 Introduction  ....................................................................   395
    . k1 A* B% B3 V) o, ~' U' {; i. mA2.2 Oxygen and Air Usage  ...................................................   396 3 J# k& [( l8 ?# a0 _1 s
    A2.3 Air Exit Flow Rate   ..........................................................   397
    6 j/ z& [* N, [A2.4 Hydrogen Usage   ............................................................   398
    6 m8 K$ \' J5 H% HA2.5 Water Production   ...........................................................   399
    9 W" T/ q! M) K( OA2.6 Heat Produced   ...............................................................   399 9 m# f$ ~0 \% G  Y+ t9 ^% Q8 K0 L
    Index   ...............................................................................................  401
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-6-16 16:46:45 | 显示全部楼层
    恩 这本书我手里也有 写的比较详细
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    开心
    2016-3-17 22:07
  • 签到天数: 2 天

    连续签到: 1 天

    [LV.1]初来乍到

    累计签到:2 天
    连续签到:1 天
    发表于 2009-6-16 16:46:45 | 显示全部楼层
    第二本比较新 06年出的
    % l: E0 o/ G; L+ @CONTRIBUTORS xvii
    + x5 m/ k3 Z- k& O2 e* K% X! l! eFOREWORD xix9 h3 t- R  {9 d5 F9 Y3 R
    PREFACE xxi
    % y0 D6 E: T( k% h$ {ACKNOWLEDGMENTS xxiii
    % e( Y' n0 V, P: TABOUT THE AUTHORS xxv
    0 U! S1 V% q( p8 k. `4 W" {; n1 ALTERNATIVE SOURCES OF ENERGY 13 P$ }) m- i( J6 o
    1.1 Introduction 1
    1 M  i/ F1 }& g4 a8 u1.2 Renewable Sources of Energy 2
    : R4 ~3 C# e) [& S" M1.3 Renewable Energy Versus Alternative Energy 4/ y1 C$ v! Q# H! v
    1.4 Planning and Development of Integrated Energy 8
      Q6 O3 Z9 E9 E1.4.1 Grid-Supplied Electricity 9( ^- J9 p4 W- V) }: l
    1.4.2 Load 10
    / g4 ^+ E( Y; \9 X3 G( ]0 D/ `1.4.3 Distributed Generation 109 C! i- N* S+ z- P8 D
    1.5 Renewable Energy Economics 11
    % S7 e; Q6 s5 P1.5.1 Calculation of Electricity Generation Costs 12
    ' J2 I) H0 i, W% D& i2 ?  [1.6 European Targets for Renewables 14: e3 E9 k8 P/ c8 j% [
    1.6.1 Demand-Side Management Options 15" \' t0 r5 n: m1 d  D% Y
    1.6.2 Supply-Side Management Options 16
    ; P6 m6 g+ h: i, Y- n2 Q1.7 Integration of Renewable Energy Sources 19
    2 _% X4 W3 s& _% e2 }1.7.1 Integration of Renewable Energy in the United States 205 E1 }. _7 _3 ?: N3 P
    1.7.2 Energy Recovery Time 21
    7 {. l' V& M& q' Q& v( |  [% T4 K1.7.3 Sustainability 23
    6 l. A& a+ t* ]1.8 Modern Electronic Controls of Power Systems 268 R) q" L, w) }
    References 27
    9 H2 P' O) l& x5 q) N; R3 \; a2 PRINCIPLES OF THERMODYNAMICS 28
    ; q. e, W2 U7 ?" `% K2.1. Introduction 28
    3 L: M# O4 i4 s$ B& s2.2. State of a Thermodynamic System 294 z3 m- A  M, B- a
    2.3. Fundamental Laws and Principles 36
    5 }% O( ~7 O, U$ S2.3.1 Example in a Nutshell 37
    ( L8 B- T3 K: |& m2.3.2 Practical Problems Associated with Carnot Cycle Plant 400 n! M  q' }, V7 z9 g  u% y: Y4 z. D
    2.3.3 Rankine Cycle for Power Plants 41/ k6 X* O6 [- T$ B* v
    2.3.4 Brayton Cycle for Power Plants 442 i; E' Z$ K8 T% a1 o  _2 A3 W
    2.3.5 Energy and Power 468 M) U2 i# g' [4 A0 e: N  ^
    2.4 Examples of Energy Balance 47
    " Q. ^3 Z% E2 u$ v2.4.1 Simple Residential Energy Balance 47
    & ^9 D2 f/ S* a2.4.2 Refrigerator Energy Balance 48! o) H! A& I; C9 u0 r* R
    2.4.3 Energy Balance for a Water Heater 49/ D* g! {2 E* c! ?( x
    2.4.4 Rock Bed Energy Balance 51! E2 U4 c8 ]* K- L( s
    2.4.5 Array of Solar Collectors 519 v5 w8 E3 N* w! N
    2.4.6 Heat Pump 52
    : n6 P: K% a! T4 l  s! E; e) }2.4.7 Heat Transfer Analysis 53
    ! e( c" n/ e; B6 y6 G2 s/ ~9 R2.5 Planet Earth: A Closed But Not Isolated System 54
    7 v7 {% D5 @6 T# J4 r9 v# Q' wReferences 56
    0 K2 o5 v# n) c8 ?0 ^( `% t3 HYDROELECTRIC POWER PLANTS 57
    4 d$ j' b6 l' s, r' W' t3.1 Introduction 573 T0 P& o; `2 r; K, w9 q9 [
    3.2 Determination of the Useful Power 58
    " D; a* @6 S4 C! @5 s7 l3.3 Expedient Topographical and Hydrological Measurements 60
    4 [$ ]: O0 ?: {* ?3.3.1 Simple Measurement of Elevation 60
    " H5 ~: o, |! H& m) M1 k3.3.2 Global Positioning Systems for Elevation Measurement 60$ M0 X9 j% F5 i' ~0 V
    3.3.3 Specification of Pipe Losses 62- g8 A4 Z9 ]8 d! c2 L3 m; E* E% q
    3.3.4 Expedient Measurements of Stream Water Flow 63
      |- Z& R' y- S9 [! A3.3.5 Civil Works 673 S4 \/ J/ s1 N$ @# s
    3.4 Generating Unit 67" J& I# @# [( b6 t3 Q# @: U
    3.4.1 Regulation Systems 67% K; x0 x' ?) D' z9 [' F
    3.4.2 Butterfly Valves 683 _* k& Q' q+ j1 p
    3.5 Waterwheels 68, Y6 r2 `' \  P- l7 a# }5 i: A8 V$ n
    3.6 Turbines 707 [0 J+ L8 G4 m
    3.6.1 Pelton Turbine 717 `2 r2 f! L% I2 A2 f' Z/ `0 m
    3.6.2 Francis Turbine 74
    2 W% u% c: w' T3 h6 w3.6.3 Michel–Banki Turbine 775 ?7 \+ g$ u! r) Y
    3.6.4 Kaplan or Hydraulic Propeller Turbine 79+ C5 k. ~2 u4 r; |9 j$ a) _6 z
    3.6.5 Deriaz Turbines 80  y; S  M* R" b
    3.6.6 Water Pumps Working as Turbines 80
    3 Z0 l. E& R* o3.6.7 Specification of Hydro Turbines 811 n& N. u6 k$ v7 V, p. H0 @
    References 827 U2 z- }- y  L8 E- i
    4 WIND POWER PLANTS 84: n2 n+ e3 N: A+ e) p
    4.1 Introduction 841 r4 S- Y  ^/ {" U* g
    4.2 Appropriate Location 85. ^3 [% X6 a% h0 U1 y/ D& j0 z
    4.2.1 Evaluation of Wind Intensity 85* V8 z) ]7 |, K
    4.2.2 Topography 93
    / B; [% F. U7 Q: s4.2.3 Purpose of the Energy Generated 95# |, _. _# |" S' a
    4.2.4 Means of Access 95
    1 d. y# H' k- z- c5 Z5 ?, r5 k4.3 Wind Power 958 d* m+ x9 ?+ T4 Q) ~. j6 Y' f
    4.4 General Classification of Wind Turbines 97! f; `% v* I. g5 k
    4.4.1 Rotor Turbines 99
    * s6 t* n9 r3 e: [8 _  P8 K2 S9 q: D' y4.4.2 Multiple-Blade Turbines 99
    - M4 ]1 N# p8 J/ ]/ [* o4.4.3 Drag Turbines (Savonius) 100) |4 n( k! W/ j
    4.4.4 Lifting Turbines 101
    " d, R: \( D% j4 t( \: N) l4.4.5 System TARP–WARP 102# b1 U9 l2 T/ F) R3 \/ P0 j, K
    4.4.6 Accessories 103
    * n7 ~- l! H! O2 X6 D4.5 Generators and Speed Control Used in Wind Power Energy 104
    + c' I' ]% N5 D1 z* t1 a& n. H4.6 Analysis of Small Generating Systems 1072 ?' I* e) v0 z3 X% z
    References 110
    . y+ ^8 W  A3 g5 THERMOSOLAR POWER PLANTS 112
    4 W) X. t( ~9 G# M5.1 Introduction 1121 C- f3 h6 |! ~4 b% q9 m
    5.2 Water Heating by Solar Energy 112( P6 M! b* e3 {
    5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 115( N) c( U4 X+ u4 {. g
    5.4 Heating Domestic Water 118" R' I. Y& ~# H; e
    5.5 Thermosolar Energy 119
    $ O' ~$ y1 W2 A, A. }5.5.1 Parabolic Trough 120% c  O  F2 c# h: S
    5.5.2 Parabolic Dish 122
    % g2 T/ r8 M. p5.5.3 Solar Power Tower 124% i' _8 f2 s9 W% h! v; }! w0 l
    5.5.4 Production of Hydrogen 125/ d5 a$ E; {; w& v* I" C
    5.6 Economical Analysis of Thermosolar Energy 126
    4 Z# l& w$ B! P6 H' o9 @8 kReferences 127* R7 I2 H1 B; p7 R$ h  c
    CONTENTS ix6 PHOTOVOLTAIC POWER PLANTS 1297 K' n" R; _) x7 g4 B- [) J0 I( i
    6.1 Introduction 129
    9 d# Z; }* F# W& {6.2 Solar Energy 130
    + \! V5 t0 ]  |1 x/ q/ S6.3 Generation of Electricity by Photovoltaic Effect 132
    / G* q% i0 @  q- }/ m6.4 Dependence of a PV Cell Characteristic on Temperature 1355 m! N3 h% S: P1 [7 ^
    6.5 Solar Cell Output Characteristics 1375 N- w  B1 B7 v: H. l
    6.6 Equivalent Models and Parameters for Photovoltaic Panels 139$ k7 g1 A9 |$ q" w( z1 |) O9 p
    6.6.1 Dark-Current Electric Parameters of a Photovoltaic Panel 1404 H5 e& ?* I5 @* k
    6.6.2 Model of a PV Panel Consisting of n Cells in Series 142! E/ z) `7 z) z/ Y7 P0 F
    6.6.3 Model of a PV Panel Consisting of n Cells in Parallel 144
    ! u# N2 D, b8 ]. R& `' Z5 K# V6.7 Photovoltaic Systems 145  [8 B% R' {4 b6 m& H! H+ d
    6.7.1 Illumination Area 146
    - T% ^0 I7 L- F$ M, `6.7.2 Solar Modules and Panels 1463 L1 x% j1 [! V: E6 U( U& [- R
    6.7.3 Aluminum Structures 1461 ~; N& w6 B$ ]2 D1 T
    6.7.4 Load Controller 148" q9 ^% Q; Z* V; t# J) V; A
    6.7.5 Battery Bank 148
    + m. s$ m, T" K6.8 Applications of Photovoltaic Solar Energy 149
    & }# W' ]2 l9 O6.8.1 Residential and Public Illumination 149
    , R4 h4 q& m, r# D7 X- x$ ]6.8.2 Stroboscopic Signaling 150
    8 x6 D& x4 [$ b' r; p7 u6.8.3 Electric Fence 150
    6 ]& j+ u# i; j/ U0 a6.8.4 Telecommunications 151
    & l4 B$ ?( b2 t. `6.8.5 Water Supply and Micro-Irrigation Systems 1513 y$ |$ z) W8 S9 Y) ?9 |2 U1 Q4 O
    6.8.6 Control of Plagues and Conservation of- a) v& D; t# p9 Y, W6 G
    Food and Medicine 153
    6 N$ b) e5 ~7 J4 i! L2 S  t6.8.7 Hydrogen and Oxygen Generation by Electrolysis 154
    1 o( N; ~4 L6 L( u2 Q1 l7 T  L5 U6.8.8 Electric Power Supply 155
    " z: x/ n( |9 f! y6.8.9 Security and Alarm Systems 156# D: l5 T% D3 j4 Z6 Z
    6.9 Economical Analysis of Solar Energy 156, z  @; S4 k5 S$ i/ S
    References 1579 b, Q- A8 \( Z: `1 d( c: [
    7 POWER PLANTS WITH FUEL CELLS 159
    9 }: B3 N+ m: _* g8 C0 U, j7.1 Introduction 159
    7 I$ H. P- {( U$ [8 D- p( Z% D0 x7.2 The Fuel Cell 160
    7 I" D- [4 N7 V7.3 Commercial Technologies for Generation of Electricity 162+ p+ h* u/ z& |! N/ E4 r
    7.4 Practical Issues Related to Fuel Cell Stacking 169
    ( B6 q  }- W' V1 Q7.4.1 Low- and High-Temperature Fuel Cells 169
    - f" f5 \$ N! I7.4.2 Commercial and Manufacturing Issues 170
    1 h! J7 m1 m; l0 nx CONTENTS7.5 Constructional Features of Proton Exchange& |% O. d3 [% X% i8 h0 S, G
    Membrane Fuel Cells 171
    - ?  y9 S! {6 |1 t% s$ h. E" G7.6 Constructional Features of Solid Oxide Fuel Cells 1731 u, a$ _- b: B0 h: b: L9 \1 S/ i
    7.7 Water, Air, and Heat Management 175
    # d* h4 q8 @" |3 f# \" k7.8 Load Curve Peak Shaving with Fuel Cells 176
    # j+ G* }- ]: Z/ R, y+ X7.8.1 Maximal Load Curve Flatness at Constant Output Power 176; p9 h8 g5 i- h  A& _6 J
    7.8.2 Amount of Thermal Energy Necessary 178
    ' K6 y; t5 S, S8 y4 m7.9 Reformers, Electrolyzer Systems, and Related Precautions 180
    , u5 t0 ^. [, @( p) J! w( X7.10 Advantages and Disadvantages of Fuel Cells 181' W. p( h" Z" v
    7.11 Fuel Cell Equivalent Circuit 182
    6 h- V- r+ ]/ f( S7.12 Practical Determination of the Equivalent Model Parameters 188
    7 V! P- m! y: l8 J) E* m7.12.1 Example of Determination of FC Parameters 191
    3 P) w) p# ?5 x! m4 z# m5 m# z7.13 Aspects of Hydrogen as Fuel 194/ ]" \& ?& h3 N, r# a
    7.14 Future Perspectives 195
    / f3 f3 G6 }& O; g2 k0 Q0 oReferences 196
    ; \% f3 Y$ E3 B9 h7 u$ l" n8 BIOMASS-POWERED MICROPLANTS 198
    9 ?3 }# A; F0 V8.1 Introduction 1986 f- x# x% `: A* d7 E
    8.2 Fuel from Biomass 202! {5 \# K) ?5 @, h& E7 B/ ~. Q
    8.3 Biogas 204
    # A5 F" L, Z: g" D8.4 Biomass for Biogas 2058 p" S9 @5 Q% |' r
    8.5 Biological Formation of Biogas 206
    ) P% w; H% r8 V  m# ^4 S8.6 Factors Affecting Biodigestion 207
    ' d3 {- B* m7 \) k) O! z8.7 Characteristics of Biodigesters 209
    , v2 ~. @) {+ K8.8 Construction of Biodigester 210. w* J. C& q' @1 q" ?4 a0 H
    8.8.1 Sizing a Biodigester 2116 d2 c/ l: f7 v0 d
    8.9 Generation of Electricity Using Biogas 211/ o$ L/ x  j: C* n
    References 2145 y# r. l# b+ R& j( {  p- o8 i  ~
    9 MICROTURBINES 215
    5 k. L* o( y% w4 f; Y: Q9.1 Introduction 215
    ! z  _  c: ?9 X9 u. F9.2 Princples of Operation 217
    ( ]5 }9 Q+ P4 W' W& r4 ^2 N( t( Z' o9.3 Microturbine Fuel 219
    ' E: n' G7 O/ Z1 H! x! y9.4 Control of Microturbines 220* a' A" W$ w$ ~( a
    9.4.1 Mechanical-Side Structure 220, Z3 c' Z" M" ?5 ?8 e
    9.4.2 Electrical-Side Structure 222
    - a4 H$ I& v. b- l5 m, O* k9.4.3 Control-Side Structure 224% m" z6 I$ I5 j/ j5 S' P: }. G
    CONTENTS xi9.5 Efficiency and Power of Microturbines 228% y3 f2 P/ X3 i; s, u4 s1 F1 Q# Q
    9.6 Site Assessment for Installation of Microturbines 230
    % b' i1 Y/ R- BReferences 2319 U/ b7 E, Z4 d6 u" s3 _6 @
    10 INDUCTION GENERATORS 233
    , _% |9 [" ]  o' p10.1 Introduction 2332 I! N' a7 ~: u, l
    10.2 Principles of Operation 234
    ' U9 @  Z  K: {10.3 Representation of Steady-State Operation 2367 W! C% d0 i3 w( ~2 P+ A/ m2 y
    10.4 Power and Losses Generated 237# g1 ~* t+ J. b
    10.5 Self-Excited Induction Generator 2409 F$ I. k, @8 _3 Q9 X! _$ C2 v( \
    10.6 Magnetizing Curves and Self-Excitation 242/ M, B& S7 C) e, K& |- ~
    10.7 Mathematical Description of the Self-Excitation Process 2431 e+ K% {% r2 M! {3 V: S$ P$ }
    10.8 Interconnected and Stand-Alone Operation 246  k. ^9 T8 l' }3 I; U2 ~' v. R( `9 s
    10.9 Speed and Voltage Control 248% T3 z) M+ b1 k% Y9 [6 M% d
    10.9.1 Frequency, Speed, and Voltage Controls 2492 l. l; V! o1 b, a0 g# m1 O
    10.9.2 Load Control Versus Source Control
    0 i# ]6 `' B, S/ bfor Induction Generators 2502 |5 C% s1 ?* t- D$ u5 D. H
    10.9.3 The Danish Concept 254
    0 \" S* H! G1 R/ M10.9.4 Variable-Speed Grid Connection 255
    ! Q/ t0 m* e' W10.9.5 Control by the Load Versus Control by
    3 o: C9 i7 ~: ]3 \  C" a& c' V  X% c9 zthe Source 256) n  a0 E8 ]% h6 ?
    10.10 Economical Aspects 258
      b, i. @. p  C7 a0 W9 D; wReferences 259
    3 j$ Y' B( m- ~: B7 S) Z& I11 STORAGE SYSTEMS 262/ y5 F# S: K, M5 ^
    11.1 Introduction 262
    & T5 E6 v! W4 g4 @9 Z+ k11.2 Energy Storage Parameters 265
    - X: D6 H5 `7 d% e11.3 Lead–Acid Batteries 268
    # w9 _; N& s& a- B+ M2 S8 v4 S11.3.1 Constructional Features 268' @2 g5 A  A+ c
    11.3.2 Battery Charge–Discharge Cycles 269, i: \4 w- f4 \9 R, g: L8 e+ L/ n
    11.3.3 Operating Limits and Parameters 271
    ; V8 T  Y" m- }2 n- R& X/ Q11.3.4 Maintenance of Lead–Acid Batteries 273
    - a7 g2 ]( z/ ^, ~# j11.3.5 Sizing Lead–Acid Batteries for DG Applications 273: V  t: l" H" d4 a
    11.4 Ultracapacitors 276
    9 M( V) h8 O  z2 I/ N* w9 F2 B1 i11.4.1 Double-Layer Ultracapacitors 2771 }8 y" g  ~# ~1 ~, l* W
    11.4.2 High-Energy Ultracapacitors 278
    0 N  i% f6 A* R' b* C+ y3 Z11.4.3 Applications of Ultracapacitors 279
    : ]6 E- G! X  e- @0 Yxii CONTENTS11.5 Flywheels 2821 M1 z6 o0 r) P- P3 O7 L+ V% y
    11.5.1 Advanced Performance of Flywheels 282! f, {0 W9 l: q* J% m% `
    11.5.2 Applications of Flywheels 282& _5 D: c7 L: H
    11.5.3 Design Strategies 284
    5 d, d7 i4 X) v; o11.6 Superconducting Magnetic Storage System 286
    7 ^( v# ], w5 v8 I" h+ \/ s11.6.1 SMES System Capabilities 287( a$ Q( y+ ?. t7 q% ?7 o
    11.6.2 Developments in SMES Systems 288
    4 f( Y' @, B7 o% n2 k11.7 Pumped Hydroelectric Energy Storage 290( M+ `( n3 b5 `3 u3 R
    11.7.1 Storage Capabilities of Pumped Systems 291
    7 `4 ]3 Y, L4 a: `$ k11.8 Compressed Air Energy Storage 292  u. [4 a0 `$ G& P# e
    11.9 Storage Heat 294
    7 }$ p( e+ n# E" o7 i/ s0 Z11.10 Energy Storage as an Economic Resource 2954 k( o8 _8 z2 B- j6 F9 j. N+ |
    References 299; s; z( S4 x0 u; W9 ?4 Z  D
    12 INTEGRATION OF ALTERNATIVE SOURCES' s, M% B6 b& a% ~0 e$ {
    OF ENERGY 301, A/ L/ Z& P4 ~) M2 l7 |+ l
    12.1 Introduction 3012 I5 |$ {5 N: M! x
    12.2 Principles of Power Injection 302$ v9 w. g6 Z1 B6 }* }" ?
    12.2.1 Converting Technologies 302/ m8 t" G- c1 e* a+ p4 F
    12.2.2 Power Converters for Power Injection
    8 f4 }5 K) z% |* {into the Grid 3043 R0 M: g1 h$ A- p, Q) {& q
    12.2.3 Power Flow 306
    8 M; K, E2 b7 }' T12.3 Instantaneous Active and Reactive Power
    7 f( r' |8 {0 r/ h! S0 ~Control Approach 309; v6 n; W- ^3 U
    12.4 Integration of Multiple Renewable Energy Sources 312
    ! j* a' ]8 b/ }6 n) A& z9 k& U- P12.4.1 DC-Link Integration 315$ c; S: C: z5 l  K
    12.4.2 AC-Link Integration 3163 J0 g5 A- t" d" H% M
    12.4.3 HFAC-Link Integration 317
    9 C* g( K! O) e2 a, t8 I12.5 Islanding and Interconnection Control 320
    - D; c2 w' p3 J& _12.6 DG Control and Power Injection 325
    + {# Z) A! S0 q" V4 r' _References 331
    " L6 q+ y+ @+ N- p" y* r13 DISTRIBUTED GENERATION 3334 ]6 l2 u. D9 J" g4 ~+ }
    13.1 Introduction 333
    & p/ w6 @( X9 {( G2 E6 P1 U13.2 The Purpose of Distributed Generation 335
    $ y! R% e2 D1 b( I+ K13.3 Sizing and Siting of Distributed Generation 338
    * F3 E) Y* n* ?) p' k1 O4 r13.4 Demand-Side Management 339
    & p& c2 W. P" j; u* |# J13.5 Optimal Location of Distributed Energy Sources 340
    9 h; G' t4 j* s' MCONTENTS xiii13.5.1 DG Influence on Power and Energy1 t" F- \; t2 i# ?. D& X
    Losses 342
    5 t* H$ a/ U2 A4 G13.5.2 Estimation of DG Influence on Power6 L8 L, T2 g! O1 g+ g; T
    Losses of Subtransmission Systems 346
    9 ?; ^' E9 E2 N5 r* n13.5.3 Equivalent of Subtransmission Systems
    $ i8 ]! V' b3 PUsing Experimental Design 348" f8 W* I+ f3 Q% p  r# g
    13.6 Algorithm of Multicriterial Analysis 350
    8 x6 p2 I' ]0 L4 Y: T5 KReferences 352
    ! @! j1 m5 O& o9 l. G# {1 d14 INTERCONNECTION OF ALTERNATIVE ENERGY
    / ?0 Z; B: N) L) {SOURCES WITH THE GRID 354
    ! a1 T' l9 f4 x; ~7 rBenjamin Kroposki, Thomas Basso, Richard DeBlasio,
    # M; n7 i, u) [0 y: p% _2 hand N. Richard Friedman/ J" b3 z* W- o5 d* ^# H
    14.1 Introduction 3549 r0 {/ E# q- u& V
    14.2 Interconnection Technologies 357
    . {0 P6 p4 d; i5 B* C: @14.2.1 Synchronous Interconnection 357
    0 v/ W  c9 i. Z8 u' s4 @0 l14.2.2 Induction Interconnection 358
    : i: D4 E* S7 o8 s  W. I  v- |2 R14.2.3 Inverter Interconnection 359
    3 `2 t" [0 X' {& x- {$ _6 J14.3 Standards and Codes for Interconnection 3590 m: `/ d: C7 o2 l/ Q& ]
    14.3.1 IEEE 1547 360/ n- L9 \& l$ o( w9 i' Z
    14.3.2 National Electrical Code 361
    % y+ \0 w' E1 ]  u14.3.3 UL Standards 362' U9 L6 s! ~$ ?( x
    14.4 Interconnection Considerations 364
    0 x; z* t! _5 n14.4.1 Voltage Regulation 364) f* m8 g" H% P7 S9 Q
    14.4.2 Integration with Area EPS Grounding 365$ g5 c; x9 ^% {5 ~. @! e$ A
    14.4.3 Synchronization 365
    0 ]( r/ M' o3 F; `  r* v14.4.4 Isolation 365& v' F8 N, @- ~9 S( G
    14.4.5 Response to Voltage Disturbance 366  _9 B! V  H1 o7 R, Z) X
    14.4.6 Response to Frequency Disturbance 367
    , `+ @* G( q1 z14.4.7 Disconnection for Faults 3686 L$ D& |. g% F
    14.4.8 Loss of Synchronism 369
    # M3 h; R2 T& B. i4 u14.4.9 Feeder Reclosing Coordination 369; r9 J0 e  q' X* r. h) ~- J
    14.4.10 DC Injection 370% ?8 z4 b( J! ?+ Y/ M0 m  g
    14.4.11 Voltage Flicker 371
    ' m* ?3 d6 [+ t: ~14.4.12 Harmonics 3711 Y) N: H% Y' P/ ^+ x0 L, V1 F
    14.4.13 Unintentional Islanding Protection 3735 B( o; n/ @5 u5 d) |. {
    14.5 Interconnection Examples for Alternative Energy Sources 373: Y! C8 U5 g8 D* [% v# S
    14.5.1 Synchronous Generator for Peak Demand Reduction 3759 {5 O: w; b  f+ ]2 a6 z# T- [& n  y! j) r
    xiv CONTENTS14.5.2 Small Grid-Connected Photovoltaic System 375
    " k. g  J/ F( _+ ]# hReferences 378
      k0 Z+ ~2 N3 z5 H+ I2 C15 MICROPOWER SYSTEM MODELING WITH HOMER 3795 \: A5 W# m- m; R* m  t% C; ^
    Tom Lambert, Paul Gilman, and Peter Lilienthal
    . y, h+ |( T% w$ F( J& }4 p15.1 Introduction 379
    & J% M3 B2 |8 {15.2 Simulation 381
    9 l! ]: ]. s  `/ u4 b15.3 Optimization 385" x: i$ Y* k; ?! m
    15.4 Sensitivity Analysis 388; D: D) ]$ _1 y  r6 Q. x9 w9 I
    15.4.1 Dealing with Uncertainty 389$ i  m3 s0 g) w7 f
    15.4.2 Sensitivity Analyses on Hourly Data Sets 391: g4 R7 |2 T' f8 v4 n
    15.5 Physical Modeling 393
    , U5 e, L( G7 w15.5.1 Loads 3937 O$ C* ]! v. h2 s( l% ~( G
    15.5.2 Resources 395
    + }; c9 a- e- g# a15.5.3 Components 397
    6 V' l8 {$ e3 Q, B- I5 N0 K" j15.5.4 System Dispatch 408( O" n. P0 @8 Z  d
    15.6 Economic Modeling 414
    0 E) x1 n; @* h5 ^9 MReferences 416
    * I  N, y' [0 K# h' G  eGlossary 416$ k- y4 H9 V" `  H/ S" E- B
    APPENDIX A: DIESEL POWER PLANTS 419
    0 Y& J9 C2 d, X0 R$ aA.1 Introduction 419( S/ o" B: B  h. s3 C* v3 J
    A.2 Diesel Engine 420; H6 O: b5 d+ I7 l! ^. q
    A.3 Principal Components of a Diesel Engine 4210 G! u% _6 H7 d) I
    A.3.1 Fixed Parts 421; ]2 ~' z; j. J) \/ B
    A.3.2 Moving Parts 421
    ( K7 e8 n& e% @, C# G- MA.3.3 Auxiliary Systems 422+ Z' F' Q" l3 b% |% }) C
    A.4 Terminology of Diesel Engines 422  U; T+ B5 X& S' `( s. p
    A.4.1 Diesel Cycle 422
    2 y5 v' v$ v5 ]6 m, `A.4.2 Combustion Process 424
    2 x1 O- d- d; N# j& X' zA.5 Diesel Engine Cycle 425
    / P- H$ D; @. i: ~8 nA.5.1 Relative Diesel Engine Cycle Losses 425  }; C  z: J( R, K5 V* c2 Y
    A.5.2 Classification of Diesel Engines 426
    " t) ~2 Y" `: ~' ^A.6 Types of Fuel Injection Pumps 4278 P* q, E. D4 c- M7 s6 ?
    A.7 Electrical Conditions of Generators Driven by" O& `7 ^4 k( W
    Diesel Engines 427
    4 X& Q* K1 s$ x- lReferences 429
    9 E4 C" u- `. O& wCONTENTS xvAPPENDIX B: GEOTHERMAL ENERGY 4316 @- J1 q# E2 x" b8 T3 N! m8 g7 \4 u
    B.1 Introduction 431; |! c- H1 i9 p& @6 l
    B.2 Geothermal as a Source of Energy 432  ]  K' P1 g" z/ Q0 ?% m8 m
    B.2.1 Geothermal Economics 434& s5 F9 o8 L, n- Z! Z) E5 J
    B.2.2 Geothermal Electricity 435
    2 ^2 }6 `" U$ B0 {1 }B.2.3 Geothermal/Ground Source Heat Pumps 436! {& _* h6 q6 i$ ~( p
    References 437
    5 r; Y% B2 j; @APPENDIX C: THE STIRLING ENGINE 4382 m$ q5 h0 @+ R1 w# V  _
    C.1 Introduction 438
    - o7 [1 H  j: KC.2 Stirling Cycle 439
    ) C1 x+ ~$ W8 \( d+ W% VC.3 Displacer Stirling Engine 442
    , t7 k$ N5 G# ]- x4 {C.4 Two-Piston Stirling Engine 444
    $ m: N; T! y9 k& I7 |References 446
    & P) d7 l# q+ H3 e8 C, rINDEX 447
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-6-16 16:50:16 | 显示全部楼层
    英文原版的,看不懂呀,还是谢谢。
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    擦汗
    2021-1-29 14:27
  • 签到天数: 8 天

    连续签到: 1 天

    [LV.3]偶尔看看II

    累计签到:9 天
    连续签到:1 天
    发表于 2009-6-16 21:59:29 | 显示全部楼层
    谢谢,英文的,看起来比较费劲。
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    难过
    2021-4-5 10:03
  • 签到天数: 3 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    累计签到:3 天
    连续签到:1 天
    发表于 2009-6-25 21:43:51 | 显示全部楼层
    英文,有些恐怖呀!
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-7-10 21:16:06 | 显示全部楼层
    好像看啊,就是看不到。地方地方 地方法大幅度大幅度飞 地方飞好想看啊,hao
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-7-13 14:15:11 | 显示全部楼层
    谢谢,正需要这方面的资料
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
    您需要登录后才可以回帖 登录 | 立即加入

    本版积分规则

    招聘斑竹

    小黑屋|手机版|APP下载(beta)|Archiver|电力研学网 ( 赣ICP备12000811号-1|赣公网安备36040302000210号 )|网站地图

    GMT+8, 2025-4-22 03:15

    Powered by Discuz! X3.5 Licensed

    © 2001-2025 Discuz! Team.

    快速回复 返回顶部 返回列表