TA的每日心情 | 开心 2016-3-17 22:07 |
---|
签到天数: 2 天 连续签到: 1 天 [LV.1]初来乍到 累计签到:2 天 连续签到:1 天
|
发表于 2009-6-16 16:46:45
|
显示全部楼层
第二本比较新 06年出的
, A) Q, K1 i+ J( ]/ G) h P' ECONTRIBUTORS xvii k; P) g# [& ?, [ v
FOREWORD xix4 c" |8 c/ h8 ~
PREFACE xxi8 s6 t! `7 ]# `4 `
ACKNOWLEDGMENTS xxiii
3 R9 G* B7 J5 j- M4 t! [! VABOUT THE AUTHORS xxv
4 d9 x/ g! V8 g5 M/ ^* f, w% p1 ALTERNATIVE SOURCES OF ENERGY 13 M6 ^8 D" Q" S) D/ P
1.1 Introduction 1! d# g# {7 n4 K0 s K6 [- u. P
1.2 Renewable Sources of Energy 2! ]! h! ?* _, }, v0 y5 j* Z9 r! c
1.3 Renewable Energy Versus Alternative Energy 4 Y: m2 L" a, p6 ^2 w5 w* B
1.4 Planning and Development of Integrated Energy 86 W! }) i' Y/ q; T& e A/ i
1.4.1 Grid-Supplied Electricity 9! H, q+ S+ p' {
1.4.2 Load 10. z% p6 y f( h, p/ |
1.4.3 Distributed Generation 10
% a9 t7 j6 r/ w3 q+ f) M1.5 Renewable Energy Economics 116 e1 `6 o; { ]. ~ ^5 O# i
1.5.1 Calculation of Electricity Generation Costs 12" h; I; T X6 @1 `5 u9 ^* Y; S/ E
1.6 European Targets for Renewables 145 `% M- e5 B7 ^: y+ D4 o
1.6.1 Demand-Side Management Options 15
) O- X+ U2 ~& M: d; J: R. ~1.6.2 Supply-Side Management Options 16
5 C3 `: A C& P: ^) ^1.7 Integration of Renewable Energy Sources 19
' k( P4 U9 f0 L" ]$ \5 v1.7.1 Integration of Renewable Energy in the United States 20 r9 z/ g6 I) B S, z9 ?
1.7.2 Energy Recovery Time 210 s: T4 p( c6 m' y. e
1.7.3 Sustainability 236 Y5 {* B% M7 l2 J* p
1.8 Modern Electronic Controls of Power Systems 26
# l+ e$ I* D* y5 F" hReferences 27
: C% `% Z2 r8 g2 PRINCIPLES OF THERMODYNAMICS 28
5 m$ f) x" m+ w3 R, ?) {2.1. Introduction 280 s1 n7 N {! J- u1 C, H
2.2. State of a Thermodynamic System 29
5 Q9 P/ b- p5 W2.3. Fundamental Laws and Principles 360 i: B: i: C: O) v
2.3.1 Example in a Nutshell 374 i8 m+ j( f* G4 L# a8 ?4 ^' n
2.3.2 Practical Problems Associated with Carnot Cycle Plant 40/ D! ~2 A8 x- {4 F) F8 K4 f8 E# |
2.3.3 Rankine Cycle for Power Plants 41
- N' I* m# j$ p1 q! }7 _2.3.4 Brayton Cycle for Power Plants 44
# `( z7 V1 _( l$ {$ Q2.3.5 Energy and Power 46- {- P1 ?+ g" t6 [6 {+ o" G: M
2.4 Examples of Energy Balance 47- P2 |( j( K- m5 F0 Q6 O9 y1 T
2.4.1 Simple Residential Energy Balance 47- [8 n; f0 e& ^2 V6 i; A
2.4.2 Refrigerator Energy Balance 48
- y# @0 L& I& B1 C9 ?- [2.4.3 Energy Balance for a Water Heater 49- e. H9 Q( K& q5 E
2.4.4 Rock Bed Energy Balance 51
' c) j( }: h7 X' z* |2.4.5 Array of Solar Collectors 51
% O% z6 `& x% A6 B% ~2.4.6 Heat Pump 52
" }7 a) P8 V" D( x% J5 [2.4.7 Heat Transfer Analysis 53
: P$ w) I! T5 J4 M; [2.5 Planet Earth: A Closed But Not Isolated System 54# y* O5 E8 c% Y/ ^% d: ^6 c
References 569 N% _2 p/ X, H+ t/ N6 Y/ `
3 HYDROELECTRIC POWER PLANTS 57; S, {" Z; g# p( T6 B
3.1 Introduction 57
( I3 b" b. \/ ^/ s0 D3.2 Determination of the Useful Power 58% L: \% @( } ~
3.3 Expedient Topographical and Hydrological Measurements 60$ L" z% ^, o, N8 P$ C
3.3.1 Simple Measurement of Elevation 60
0 r& k4 g" [& E3.3.2 Global Positioning Systems for Elevation Measurement 60
2 i2 M+ H9 D L0 s/ R. l3.3.3 Specification of Pipe Losses 62
x) h) w3 Q9 `9 z3.3.4 Expedient Measurements of Stream Water Flow 63
5 ^( _) v0 ]& a) w7 W* b3.3.5 Civil Works 67( C5 I. ^0 F2 y
3.4 Generating Unit 67
% _: h0 n9 E6 x8 i- o3.4.1 Regulation Systems 673 c: g( O3 i! {* P
3.4.2 Butterfly Valves 68
3 K4 `' _1 U: A: f3.5 Waterwheels 68
' Z. J9 }9 V& U2 S3.6 Turbines 70) Y5 J) R" N6 W# K3 M; l# `3 p
3.6.1 Pelton Turbine 71
+ f$ c! G8 a) O/ P9 ^% o3.6.2 Francis Turbine 74
7 H5 d# M; Y1 v6 h2 `( n* ?. E: H3.6.3 Michel–Banki Turbine 77; w2 j0 O) J& K6 z. ?9 U
3.6.4 Kaplan or Hydraulic Propeller Turbine 79
( j- T; @% t% P/ F& t# o7 o% ?3.6.5 Deriaz Turbines 80$ V; b9 F" A* P- r; g
3.6.6 Water Pumps Working as Turbines 80: G0 {- c, F+ c; _; O& {
3.6.7 Specification of Hydro Turbines 81
, |/ B/ }% {9 m0 VReferences 82) h$ J' r" j2 b
4 WIND POWER PLANTS 84 |3 h5 W' {: l$ q# ?0 M6 Q$ g
4.1 Introduction 84
+ z# G2 A# p! }) h) v" Q4.2 Appropriate Location 85
$ c9 C+ E/ a8 z7 J) n7 u ~* g4.2.1 Evaluation of Wind Intensity 85
( P9 i X; Y5 n8 u9 a8 r& V4.2.2 Topography 93
! s7 H6 s3 e( v$ z0 O* m4.2.3 Purpose of the Energy Generated 95
/ F# f( d, g n# q$ R0 y4.2.4 Means of Access 95* c1 G, w! j) g! Z# U1 R- ^
4.3 Wind Power 95
) {- L1 J8 x' s' N7 p' k4.4 General Classification of Wind Turbines 97
' t- M# V, o+ [2 d3 ]! O4.4.1 Rotor Turbines 99% s: ?1 e; A* r% _& J$ f* S1 L& Q: |
4.4.2 Multiple-Blade Turbines 990 B) U h6 `& P y4 s
4.4.3 Drag Turbines (Savonius) 100" y2 M6 Z7 A* J: w& k' J( ? u6 y$ Z
4.4.4 Lifting Turbines 101
P) a* @* w# a5 ]( w- e3 T0 w% |4.4.5 System TARP–WARP 102* t0 h8 s' i8 r5 t
4.4.6 Accessories 1034 f9 ?. v( s4 t: K3 z& b G+ Q
4.5 Generators and Speed Control Used in Wind Power Energy 104
) s9 A6 q$ d! N# d$ h" y+ j; o4.6 Analysis of Small Generating Systems 107
/ o' l4 z4 M c1 [" M, b3 l, T' DReferences 110
. w7 E- ?) _0 y/ U( ?5 THERMOSOLAR POWER PLANTS 1128 w: e+ C! `+ g: r
5.1 Introduction 1124 h7 N4 n. l! s# q: [3 e. s: {
5.2 Water Heating by Solar Energy 112% i9 f( \. L- [' y; z
5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 115
( ], B* f/ y `4 i5.4 Heating Domestic Water 118
A, n, F4 q& Y# E- L5.5 Thermosolar Energy 119
) G9 Y5 _1 d/ k' i& y+ n6 Q5.5.1 Parabolic Trough 1203 w: Q& B% w0 v
5.5.2 Parabolic Dish 122
8 |. c/ Y( E; W2 ~! y5.5.3 Solar Power Tower 1241 p% }+ j- z- M* Q& a& `+ \/ g- ?
5.5.4 Production of Hydrogen 125+ H" V1 {- @4 L9 C! W6 `. f
5.6 Economical Analysis of Thermosolar Energy 126
# r- }& p, [6 s6 w- hReferences 127' q+ P$ w/ e% D" S2 B* c5 o
CONTENTS ix6 PHOTOVOLTAIC POWER PLANTS 129
1 S6 n; w5 {+ D4 |6.1 Introduction 129
/ I0 t) J- s1 I* B4 e l; h6.2 Solar Energy 130# N, I* `% z. x7 q( I
6.3 Generation of Electricity by Photovoltaic Effect 132
; ^( q/ I# |* m/ A4 E- K6.4 Dependence of a PV Cell Characteristic on Temperature 1351 Y% k; C- G; G
6.5 Solar Cell Output Characteristics 1370 ?! X' N3 |, M
6.6 Equivalent Models and Parameters for Photovoltaic Panels 139
k4 T% {/ T, g7 T; V0 A. D6.6.1 Dark-Current Electric Parameters of a Photovoltaic Panel 140+ v- V2 H- q0 p2 P% y$ U! p: Z
6.6.2 Model of a PV Panel Consisting of n Cells in Series 142
: c+ _& l) L* ?; b6.6.3 Model of a PV Panel Consisting of n Cells in Parallel 144
- i+ C! n: i n- H' g6.7 Photovoltaic Systems 145
& _* L4 `7 n3 d7 o. k5 n6.7.1 Illumination Area 146
?3 c9 z% r+ s$ r) @6.7.2 Solar Modules and Panels 146
9 u3 q6 `& y( Q! O6.7.3 Aluminum Structures 146. c6 O& T% g X8 n& m4 {
6.7.4 Load Controller 148& \: z7 U& g7 C. S& u* w, h
6.7.5 Battery Bank 148
. x7 j$ K/ B# Q+ W. _6.8 Applications of Photovoltaic Solar Energy 149
, v. B* x3 Z. P6 q5 v3 U6.8.1 Residential and Public Illumination 149
3 q" I p7 W+ K+ _( ?, `6.8.2 Stroboscopic Signaling 150
7 B9 P5 L7 z! h1 O; }/ k6.8.3 Electric Fence 150
: I2 `. d2 e) l5 Z* O; l, G+ q0 i6.8.4 Telecommunications 151
# v7 k4 t' I. C: i N( ]5 C6 E6.8.5 Water Supply and Micro-Irrigation Systems 151
! @: i: f. z2 E; {; ~! F6.8.6 Control of Plagues and Conservation of2 O5 N7 d* c3 X
Food and Medicine 1535 X" ^5 _3 X O5 e8 R2 `
6.8.7 Hydrogen and Oxygen Generation by Electrolysis 154
- _% A. C$ r& K4 Z/ G6.8.8 Electric Power Supply 155
3 K5 y9 h' L/ }3 z- N: r6.8.9 Security and Alarm Systems 156
, n; x+ M o, ]4 ]- m" X7 o9 }- x# a6.9 Economical Analysis of Solar Energy 156
2 X& W* _* _: p2 @, d. kReferences 157
5 v! H- `# L: F7 POWER PLANTS WITH FUEL CELLS 159
: F# W1 Q3 k# T" O7.1 Introduction 159& e$ t8 N2 M% B' j& K1 ]3 q
7.2 The Fuel Cell 160/ R6 Y) C0 C7 ^
7.3 Commercial Technologies for Generation of Electricity 162
1 H% N! p3 M: W9 ^% D7.4 Practical Issues Related to Fuel Cell Stacking 169
2 ?- X+ N. ^" d7.4.1 Low- and High-Temperature Fuel Cells 169
- m8 C: R* D) R6 e& F/ o+ F7.4.2 Commercial and Manufacturing Issues 170
4 b! Y; j; w& e% K/ ?1 V( f7 f0 V" b2 ex CONTENTS7.5 Constructional Features of Proton Exchange
3 K( U9 [0 H5 L* Y3 J/ WMembrane Fuel Cells 171
4 w; P) I, z5 W7.6 Constructional Features of Solid Oxide Fuel Cells 1732 v) G0 E4 J/ B3 N
7.7 Water, Air, and Heat Management 175! z9 i0 m/ Z( E" h: z x
7.8 Load Curve Peak Shaving with Fuel Cells 176
3 H! j" _8 z, W7.8.1 Maximal Load Curve Flatness at Constant Output Power 176
' n2 Z4 |8 A$ u5 A" Z7.8.2 Amount of Thermal Energy Necessary 178
: W7 p' H' G7 ^% \$ ~/ S7.9 Reformers, Electrolyzer Systems, and Related Precautions 180
2 z2 t+ S& O' Y0 }3 d7.10 Advantages and Disadvantages of Fuel Cells 181
5 q7 H$ I! z m u4 N9 ?* w% F1 G9 i7.11 Fuel Cell Equivalent Circuit 182
, W, }( v% W. x6 C% [: p* d6 |( g1 M/ s4 a7.12 Practical Determination of the Equivalent Model Parameters 188
& k P; ^2 Y+ Y! {$ O7.12.1 Example of Determination of FC Parameters 191
. W( `; L) h: ^& r, ^: Y7.13 Aspects of Hydrogen as Fuel 194
0 o- |* a; y, m6 V, V7.14 Future Perspectives 195
7 H8 Y3 R5 t c9 N8 JReferences 196
/ U5 H6 q* |) i J7 T& n8 BIOMASS-POWERED MICROPLANTS 198* y( N- d! m. n# x3 Y
8.1 Introduction 198
x5 W& `: M9 o3 A( B' e' s+ K1 H$ f8.2 Fuel from Biomass 2022 e# K7 U; q5 ^; p0 P
8.3 Biogas 204
$ _: J! k9 [5 d( r' g8.4 Biomass for Biogas 205
( \' c( V) U/ x0 t3 X8.5 Biological Formation of Biogas 206
$ d/ E/ M- p5 y5 t% t8.6 Factors Affecting Biodigestion 207
/ t0 x* |$ i" p- V" q$ p8.7 Characteristics of Biodigesters 209) p l, g4 ]* A' s2 O: R! p; P4 T
8.8 Construction of Biodigester 210
: v9 m+ F L4 A0 J4 w z' K8.8.1 Sizing a Biodigester 211+ R" \* q5 T/ @! s
8.9 Generation of Electricity Using Biogas 211 E- l+ h% c6 d) v- n- z# F9 O
References 214
3 N# l9 F* H9 j9 MICROTURBINES 215
! G; A8 i) {* q# [5 _. E9.1 Introduction 215% d2 O1 r+ h. r; C
9.2 Princples of Operation 217
. q6 H/ k9 M5 ~( A z9.3 Microturbine Fuel 219
- s0 s# c# b7 N9.4 Control of Microturbines 220; N0 L5 ]: ?2 U, y
9.4.1 Mechanical-Side Structure 220
; c8 D* g' ~; J* c1 ~; |9.4.2 Electrical-Side Structure 222; | Q2 B6 x% L, ^7 Q
9.4.3 Control-Side Structure 2247 Y e3 D4 a* V; M- }) a
CONTENTS xi9.5 Efficiency and Power of Microturbines 2288 j; [9 S% V, I$ c
9.6 Site Assessment for Installation of Microturbines 230
, y, k& g+ [1 s3 i! n& Z* d( w# GReferences 231" v' i9 W8 k" l$ b7 s
10 INDUCTION GENERATORS 233; `0 ^/ f/ X* x2 u3 V0 [
10.1 Introduction 2331 B- a6 q: W! o" u; ]
10.2 Principles of Operation 234
& ?' o5 w3 H3 j10.3 Representation of Steady-State Operation 236& R4 C" \, \) [2 M
10.4 Power and Losses Generated 237 x& R# d1 H, q, c, a- @6 Q ]) ?
10.5 Self-Excited Induction Generator 240
" x( v% R# Z/ h. i$ v: S3 H; W10.6 Magnetizing Curves and Self-Excitation 242
+ P$ ?$ ]5 y6 C7 l" f2 |10.7 Mathematical Description of the Self-Excitation Process 2439 W1 V8 _3 a* x: _3 A
10.8 Interconnected and Stand-Alone Operation 246% K& @/ ]. h, O9 s; i/ A
10.9 Speed and Voltage Control 248
5 Q, s; h& q3 {$ D6 a1 N" R7 {10.9.1 Frequency, Speed, and Voltage Controls 249
5 c& y& n6 ^% o1 c/ r% K3 V* W10.9.2 Load Control Versus Source Control
# I) G) F; U3 a3 A j8 Tfor Induction Generators 250+ g, p l) e9 K+ N
10.9.3 The Danish Concept 254
! e/ n" }& u% f E& Y- Y10.9.4 Variable-Speed Grid Connection 255
2 W+ x! O$ y! ] z& I$ y4 ^! H; Y10.9.5 Control by the Load Versus Control by8 q' h0 q0 q. a& u+ E3 i% ^
the Source 256
2 @6 K6 ~6 l" Y% Q; M$ J10.10 Economical Aspects 258) C1 M+ c. W4 p
References 259
9 h5 u6 M* Q6 { V; h) K% ?8 q11 STORAGE SYSTEMS 262
+ Y. j5 M. Y* V: m0 M* P11.1 Introduction 262$ C1 P5 u! b7 f/ m$ p1 X
11.2 Energy Storage Parameters 2652 L4 D+ W- ]/ u/ s" c
11.3 Lead–Acid Batteries 268! y! d# J$ e) k/ Z+ d8 D3 A
11.3.1 Constructional Features 268# \; e5 u+ Q# d( D5 h
11.3.2 Battery Charge–Discharge Cycles 269
5 a4 ~6 v- Y+ |- p4 J* h" ~. {11.3.3 Operating Limits and Parameters 271
1 x. ~$ v4 e3 Z. X, T. x$ i11.3.4 Maintenance of Lead–Acid Batteries 273
) q/ O2 n, v5 b$ A, p* j H11.3.5 Sizing Lead–Acid Batteries for DG Applications 273; j- e# s" f) T; n) x# t- N* o
11.4 Ultracapacitors 2765 u D! c2 H) Q! O. @) t7 _
11.4.1 Double-Layer Ultracapacitors 277
* T7 I8 d* z( ~1 p7 J( a& V! m11.4.2 High-Energy Ultracapacitors 2781 S5 F. V5 s3 X2 ?4 _, S
11.4.3 Applications of Ultracapacitors 279+ \+ X5 u+ m7 [* B% E* @
xii CONTENTS11.5 Flywheels 282
: ~7 h, K; i+ @11.5.1 Advanced Performance of Flywheels 282. E! L% g: p; U
11.5.2 Applications of Flywheels 282# \7 I# l' n1 Q T- B& P6 O( T
11.5.3 Design Strategies 2848 t' x; T J7 @; `% m1 F% b9 F: N
11.6 Superconducting Magnetic Storage System 286
& j: K+ u% ~8 i3 g# w9 D11.6.1 SMES System Capabilities 287! p# M! V# y7 {2 l1 {8 I
11.6.2 Developments in SMES Systems 288- T7 }9 c4 }& h2 X) f$ d5 a5 H
11.7 Pumped Hydroelectric Energy Storage 290) M, P1 c9 m: p/ w" W( @$ W: }" J
11.7.1 Storage Capabilities of Pumped Systems 291. z3 E L; H( q# S7 @6 a4 }) s
11.8 Compressed Air Energy Storage 292: U3 c0 W) t. t& i3 b% {' I
11.9 Storage Heat 2948 z" h# I' [/ w2 ]0 L
11.10 Energy Storage as an Economic Resource 2952 T: Y. l, n9 y K- n0 v% j
References 299' a0 r9 h3 O. h5 _
12 INTEGRATION OF ALTERNATIVE SOURCES& k5 L" c: v4 e6 a
OF ENERGY 301
4 x# V' ? E- J9 i( V12.1 Introduction 301
7 o7 Y" D1 l: q12.2 Principles of Power Injection 302
, i) M$ h! O/ M+ u1 c12.2.1 Converting Technologies 302. \( Y( {: C0 C: ^
12.2.2 Power Converters for Power Injection2 M) j9 N1 O6 B5 e$ D0 p
into the Grid 304
, d: B* z& G/ w4 w3 }8 ~% Q% R12.2.3 Power Flow 3065 x u- _5 B* C7 m7 o& D; X& D! r5 k
12.3 Instantaneous Active and Reactive Power
' ~/ m! y/ V% [: _Control Approach 3093 \0 p1 o- j7 }+ e( m$ ]7 T
12.4 Integration of Multiple Renewable Energy Sources 3127 ]3 ~5 N% \8 E/ k
12.4.1 DC-Link Integration 315% G4 c3 T+ `, E n% `' U# Y
12.4.2 AC-Link Integration 3165 j5 F q2 R' x. _7 s* r
12.4.3 HFAC-Link Integration 317
3 }# u% D: H1 p12.5 Islanding and Interconnection Control 320
0 F0 T6 ?1 h* r( E; V& k; U12.6 DG Control and Power Injection 325
. {5 o$ m+ g3 d7 D; s7 P/ K* VReferences 331
- M" ?9 u3 \% u% ~1 B% Q9 [, G13 DISTRIBUTED GENERATION 333
o0 n- v A( t, H13.1 Introduction 3333 O1 j# m) J+ r* a3 H
13.2 The Purpose of Distributed Generation 3350 _8 @& T% y4 \* L5 e( R3 ~
13.3 Sizing and Siting of Distributed Generation 338, M+ n! U) X V2 k
13.4 Demand-Side Management 3394 z$ {4 E; }; g% y/ C; P
13.5 Optimal Location of Distributed Energy Sources 340
4 z1 ^" b6 T0 O9 ~* PCONTENTS xiii13.5.1 DG Influence on Power and Energy8 z4 H" M4 t0 r5 Q5 U
Losses 3420 ~5 ?' r. s. H6 x. U9 m: P% L
13.5.2 Estimation of DG Influence on Power- S8 e8 F0 S; n7 T
Losses of Subtransmission Systems 3466 N6 _0 ?' d( j; ?1 D) R( z
13.5.3 Equivalent of Subtransmission Systems/ N- \: t# V* T* S0 I) Z: |5 Q
Using Experimental Design 3484 P2 n# w' g, E9 j; k$ \% j
13.6 Algorithm of Multicriterial Analysis 350$ s1 F1 X; I( E
References 3522 D5 d% f& `( b1 {; o5 G# q7 c
14 INTERCONNECTION OF ALTERNATIVE ENERGY
G/ u* p, ]! H% h! _/ u4 @+ f8 [SOURCES WITH THE GRID 354
; \, t- ~! R5 _4 h! {* P- MBenjamin Kroposki, Thomas Basso, Richard DeBlasio,# V( {6 O6 T' B8 D$ j5 y! U
and N. Richard Friedman
! S7 P0 ~3 I8 L4 M% R6 u14.1 Introduction 354
0 A' d8 U% W, ?6 w: r14.2 Interconnection Technologies 357" f3 f3 V" P. B; V% k/ Z4 E6 g
14.2.1 Synchronous Interconnection 3575 a/ n: N3 O" ~0 G# \$ R
14.2.2 Induction Interconnection 358 w( a0 z' w2 i3 B) e5 t
14.2.3 Inverter Interconnection 359
) B" k$ V7 N* |5 M) I9 r14.3 Standards and Codes for Interconnection 3599 D' q- M. a$ ^3 Z/ c
14.3.1 IEEE 1547 360$ |; \5 o# x' I9 {9 ?& M2 }
14.3.2 National Electrical Code 361
8 ^1 ^* ~% l+ j; z2 }14.3.3 UL Standards 362
, W0 B6 X6 `6 H: F+ i! K14.4 Interconnection Considerations 3643 @$ ]2 ]7 y) x3 e# k9 c- [' ]
14.4.1 Voltage Regulation 364
8 v8 a) n Z2 f14.4.2 Integration with Area EPS Grounding 365# _) h, ^; d$ u W8 G
14.4.3 Synchronization 365* R) W/ o' D; K. g B
14.4.4 Isolation 3659 A8 x! s) z3 a0 ?" L
14.4.5 Response to Voltage Disturbance 366
# h2 N( }) C! E* _0 a14.4.6 Response to Frequency Disturbance 367% B- Z: K/ Y- t! j1 V
14.4.7 Disconnection for Faults 368
5 M5 j' s; F! S7 B) e t+ U14.4.8 Loss of Synchronism 369( l: _; b9 ]( i k) i5 w7 I
14.4.9 Feeder Reclosing Coordination 369
5 p& j7 }' h7 P14.4.10 DC Injection 370- h; r/ _* ]2 R9 G
14.4.11 Voltage Flicker 371
: }. V1 ]2 k6 G% i- z0 @5 j: S14.4.12 Harmonics 371
& W4 e, H* i" m0 g a14.4.13 Unintentional Islanding Protection 373
4 l; O% `' ?0 `" K) j) q. W14.5 Interconnection Examples for Alternative Energy Sources 373* L* O% T8 b1 I+ M- U
14.5.1 Synchronous Generator for Peak Demand Reduction 375
; N+ g2 c& M% \! s5 Vxiv CONTENTS14.5.2 Small Grid-Connected Photovoltaic System 3751 Y- F- T" w( W' Q" r! l. a4 A D2 q5 N
References 378* f9 a6 \ U8 Y& J F
15 MICROPOWER SYSTEM MODELING WITH HOMER 3797 c6 W, K l4 D+ N
Tom Lambert, Paul Gilman, and Peter Lilienthal- m8 K" s% [" M7 k: _
15.1 Introduction 379: _) b" j! F6 M1 o( h
15.2 Simulation 381
5 O; w" `0 p4 v. Y2 k$ D# W15.3 Optimization 385
# e9 Z7 L0 J! F0 U! g2 w8 L& U15.4 Sensitivity Analysis 3883 D0 Q+ M; k6 c% l! _; I4 w, \7 r
15.4.1 Dealing with Uncertainty 3896 X) b# j* N+ R/ T
15.4.2 Sensitivity Analyses on Hourly Data Sets 391
- l& b* n5 Z4 y- A' A15.5 Physical Modeling 393: z- N; G9 h7 O% ?7 |) [' f
15.5.1 Loads 393/ `4 ^- S& q3 E! b% a* G
15.5.2 Resources 395; N! Y3 z# Q a1 a) R" H
15.5.3 Components 397
- N# J: z& l) g/ J5 ?15.5.4 System Dispatch 408( `! `3 s- _7 P9 }0 o
15.6 Economic Modeling 414/ [; D; [5 h0 c/ o/ X
References 416
5 x! z( G/ ?5 B" ZGlossary 416* j/ X- B+ d8 n
APPENDIX A: DIESEL POWER PLANTS 419
: V( u% m/ h" \0 I8 ?A.1 Introduction 419' c- x6 g& G" P) s* w; M; u* w! z
A.2 Diesel Engine 420. J. q5 G" o- H" W
A.3 Principal Components of a Diesel Engine 4210 L% M! B$ C3 a+ y2 p9 z
A.3.1 Fixed Parts 421
! m1 S$ A7 {2 C- G" D/ N1 LA.3.2 Moving Parts 421
F3 I: K7 G$ p; x2 W2 s2 E$ u6 z0 D3 XA.3.3 Auxiliary Systems 422
0 W* P: A. i OA.4 Terminology of Diesel Engines 422# x! l9 X+ u/ _- S. V# X
A.4.1 Diesel Cycle 422
; v+ k2 R) C) D3 b; M2 tA.4.2 Combustion Process 424/ v# H# \3 `- \9 a7 T/ q
A.5 Diesel Engine Cycle 425% {7 J) K4 K( A6 Z$ x
A.5.1 Relative Diesel Engine Cycle Losses 425( N9 P g# X) m }; z
A.5.2 Classification of Diesel Engines 4263 n: W W$ @7 A8 ]+ n* H' m* _
A.6 Types of Fuel Injection Pumps 427; B, p, ^" e( m, h6 q
A.7 Electrical Conditions of Generators Driven by
2 B& o& p/ j( f5 }) XDiesel Engines 4277 X2 Z' m( P7 F/ b
References 429, a2 R, f, o* N) n
CONTENTS xvAPPENDIX B: GEOTHERMAL ENERGY 431
8 P6 W* N8 Z9 J( C8 g V+ p0 ~: r5 KB.1 Introduction 4310 H+ A5 ~+ v; {; h% O
B.2 Geothermal as a Source of Energy 432 K8 Z P2 O" k* E* S! x
B.2.1 Geothermal Economics 4340 N* a! k) H- L% a5 E. f, o, Y3 w
B.2.2 Geothermal Electricity 4350 X) q* }+ ], ^0 h+ k
B.2.3 Geothermal/Ground Source Heat Pumps 436
6 X+ R0 b5 x1 q+ B$ n0 gReferences 437
+ G" H6 b$ y; r/ _- O2 dAPPENDIX C: THE STIRLING ENGINE 4384 G4 G& S8 @0 _3 J, |4 y* r
C.1 Introduction 4387 M- \5 m6 N9 I* X0 u
C.2 Stirling Cycle 439; ^" |+ ?3 W H( k
C.3 Displacer Stirling Engine 442
' X9 ]1 F/ \8 ]4 j) y% I3 tC.4 Two-Piston Stirling Engine 444
( n+ b* U/ H2 h; k( ?References 446
: z* K2 ]" G1 r3 _: i1 pINDEX 447 |
|