设为首页收藏本站|繁體中文 快速切换版块

 找回密码
 立即加入
搜索
查看: 11126|回复: 65

两本微网的书

   火... [复制链接]

该用户从未签到

尚未签到

发表于 2009-6-16 16:12:19 | 显示全部楼层 |阅读模式
论文文献
标题: 两本微网的书
作者: FELIX A. FARRET, M. GODOY SIMO˜ ES, James Larminie, Andrew Dicks(估计写了也没啥用)
所属专业方向: 电力系统及其自动化
摘要: 两本书:
1、Integration of Alternative Sources of Energy.pdf
2、fuel cell system explained.pdf
关键字:
来源: 互联网

马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!

您需要 登录 才可以下载或查看,没有账号?立即加入

×
本帖最后由 bird841011 于 2009-6-16 16:39 编辑 4 Z. q. X$ y% S& D9 L; f
4 t; w3 T! c1 W! R; \+ W
两本书:
0 C. `6 h+ M, n( a3 U1、Integration of Alternative Sources of Energy.pdf; ^( c  B& Q6 O
IEEE press9 O4 v8 E- T2 i* `
简要目录, s7 _$ \- [9 i( G
1 ALTERNATIVE SOURCES OF ENERGY 10 u1 w. \$ n& [; _( C+ \
2 PRINCIPLES OF THERMODYNAMICS 287 G1 e; y/ _1 @; `9 R) f
3 HYDROELECTRIC POWER PLANTS 57. T3 b3 h1 A& O, {' p+ z! k2 o4 c4 g
4 WIND POWER PLANTS 84* \# H1 L; a( Y5 v
5 THERMOSOLAR POWER PLANTS 112
! \/ {! m; _) K1 d2 A7 H6 PHOTOVOLTAIC POWER PLANTS 129* [+ U9 J) u+ ~  _/ n
7 POWER PLANTS WITH FUEL CELLS 159$ q% @" O9 D8 W1 X1 F" @
8 BIOMASS-POWERED MICROPLANTS 1987 O" x/ U% \& I( J7 x4 A2 v# I
9 MICROTURBINES 2159 @, W4 P0 M# `+ x% }
10 INDUCTION GENERATORS 2333 {7 s; A9 {+ N7 Y# e4 g" r( y  }! q4 w
11 STORAGE SYSTEMS 2621 K8 g/ Q6 G- ]5 u: s
12 INTEGRATION OF ALTERNATIVE SOURCES
/ H( V; I  K, F1 @OF ENERGY 301
- M' e/ V5 u2 u2 I- C13 DISTRIBUTED GENERATION 333
: t8 `. D/ }$ j14 INTERCONNECTION OF ALTERNATIVE ENERGY
" m; r+ u6 b& O% u* F: S$ qSOURCES WITH THE GRID 354
: C; O1 p( l. ~3 o  E, \& z8 w15 MICROPOWER SYSTEM MODELING WITH HOMER 379
& x8 _( p- f" n) P& b( {; ]Glossary 416
! y, s6 G# U6 _* m+ o& P# a9 m% IAPPENDIX A: DIESEL POWER PLANTS 419
' @# L% _' z. T0 n# ]APPENDIX B: GEOTHERMAL ENERGY 4313 S- l  x3 ]- x" p& R- _
APPENDIX C: THE STIRLING ENGINE 438+ V) j1 O$ R% G; |$ |- i

- ]2 m9 ?( h/ y$ J- T" f7 j  w- Z3 V
: s: \( p: x$ x! R4 K4 ^
2、fuel cell system explained.pdf0 u' `' H1 a* V! Z
Wiley press, g" O2 K6 g$ [- j
简要目录1 A2 {) x" e. p5 E( I
1. Introduction ............................................................................. 1
+ [7 b8 T: c7 A  U+ s2. Efficiency and Open Circuit Voltage ..................................... 25
8 ], [# `- a: ?, Z4 O3. Operational Fuel Cell Voltages .............................................. 45
! r6 ~7 X( C, M! k! P' X4. Proton Exchange Membrane Fuel Cells ................................ 67
  t! v5 P2 w- a$ B% C# T. k5. Alkaline Electrolyte Fuel Cells ............................................... 121
# Y7 _% F: b$ ?' x6. Direct Methanol Fuel Cells ..................................................... 141
. [1 A) G0 F+ @  {7. Medium and High Temperature Fuel Cells ........................... 163/ @; a" e/ e) x2 s% A
8. Fuelling Fuel Cells .................................................................. 229* ^( {3 P' @: R" Y: [- W- c
9. Compressors, Turbines, Ejectors, Fans, Blowers, and& M2 n+ d' ]8 {9 ]  B
10. Delivering Fuel Cell Power ..................................................... 331
, ?! t* C6 C" t11. Fuel Cell Systems Analyzed .................................................. 369. p- V7 R0 t$ j6 J  b
Appendix 1. Change in Molar Gibbs Free Energy Calculations ......... 391, u* o, ~; Z8 P; ]9 ^
Appendix 2. Useful Fuel Cell Equations ............................................. 395

microgrid_2.rar

8.8 MB, 下载次数: 201, 下载积分: 威望 -2 点, 学分 -5 点

"真诚赞赏,手留余香"
还没有人打赏,支持一下
楼主热帖
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

该用户从未签到

尚未签到

发表于 2009-6-16 16:21:45 | 显示全部楼层
不错 但能不能现简单介绍下传的东西

评分

参与人数 1威望 +1 收起 理由
201110301045 + 1 完成评分任务~

查看全部评分

"真诚赞赏,手留余香"
还没有人打赏,支持一下
帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    开心
    2016-3-17 22:07
  • 签到天数: 2 天

    连续签到: 1 天

    [LV.1]初来乍到

    累计签到:2 天
    连续签到:1 天
    发表于 2009-6-16 16:44:17 | 显示全部楼层
    刚下下来 先把目录贴出来
    % u, P) H) g+ y9 D/ v0 X+ ?/ sFuel Cell Systems Explained$ Y. |0 E, S' m, p6 A
    Second Edition 2003出版的
    , L6 O3 M  G2 ~. ~! N. z8 h( O第一版是2000年1月出版的
    1 F) k! Y# G% b- o' ~& x下面是目录
    - B5 i9 j! V1 x. \. P  |Contents + n* |4 J5 _3 ~  \; r( |
    Preface   ............................................................................................   xiii
    4 O! z- b  i1 W0 o, p" @8 vForeword to the First Edition   ...........................................................   xv - P5 i0 h4 q3 O8 x3 o* y% a) ^! Q
    Acknowledgements   .........................................................................   xvii " c: G0 j+ i, I4 c, J) b
    Abbreviations  ...................................................................................   xix
    : G1 O* n; V8 p  d6 O  M1 E8 qSymbols  ...........................................................................................   xxi 9 P* v8 G2 |# J8 l5 n! g" ?
    1. Introduction   .............................................................................   1 / P0 E$ g7 m# U5 t; Y
    1.1  Hydrogen Fuel Cells – Basic Principles  .....................................   1   j/ i: q8 N5 A8 X
    1.2  What Limits the Current?   ...........................................................   5 $ R9 o$ [5 h& B
    1.3  Connecting Cells in Series – the Bipolar Plate   ..........................   6
    : \0 g: X( y" Q# ]+ Z1.4  Gas Supply and Cooling   ............................................................   10
    ' [4 s& F2 K4 ^1.5  Fuel Cell Types  ..........................................................................   14 1 t" W; {# P; |. x
    1.6  Other Cells – Some Fuel Cells, Some Not   ................................   16 6 H# e) o. G3 o, S
    1.6.1  Biological Fuel Cells   ......................................................   17
    4 b, c, [* b4 w$ i1.6.2  Metal/Air Cells  ................................................................   17
    3 A5 g  X( k( t0 ^# x9 @! T# `: H& A) Q1.6.3  Redox Flow Cells or Regenerative Fuel Cells   ...............   18   [6 D; W  X7 S  \8 C4 o& z$ j
    1.7  Other Parts of a Fuel Cell System   .............................................   19 $ G7 P8 R* ~5 a8 Y% E
    1.8  Figures Used to Compare Systems  ...........................................   21
    ; g: l+ I! u  F4 X6 ?1.9  Advantages and Applications   ....................................................   22
    - L% Q2 ~, ~+ s1 \& H: G- q5 [: J! NReferences   .........................................................................................   24
    3 E1 Y0 X- z. p2 V2.  Efficiency and Open Circuit Voltage   .....................................   25 " ~  V: G5 V: J
    2.1  Energy and the EMF of the Hydrogen Fuel Cell   ........................   25 # n, M0 ?$ U( i+ }: R1 Y
    2.2  The Open Circuit Voltage of Other Fuel Cells and Batteries   .....   30
    - V$ ~5 ]3 s5 ^! c5 n" C8 x$ _) H2.3  Efficiency and Efficiency Limits   .................................................   31
    # W% x6 X6 z2 V+ {9 }# T2.4  Efficiency and the Fuel Cell Voltage   ..........................................   34
    ! d7 i* e+ Z4 P% Z2.5  The Effect of Pressure and Gas Concentration   .........................   35 - h1 i, f* g& p
    2.5.1  The Nernst Equation   ......................................................   35
    " p- ^2 ^0 k# G' w2.5.2  Hydrogen Partial Pressure  .............................................   38 # `8 S( }2 t5 W) J1 j8 @6 V9 w
    2.5.3  Fuel and Oxidant Utilization   ...........................................   39
    0 [& J! f6 i4 I7 |3 `2.5.4  System Pressure  ............................................................   40
    1 \5 ]: U! |% u4 P3 I5 m2.5.5  An Application – Blood Alcohol Measurement   ...............   41 - t7 I7 k( Z/ U1 _% }& N2 O! H
    2.6 Summary  ...................................................................................   42 7 b4 C+ q8 E, M6 O' {4 g3 S2 v- _6 d
    References   .........................................................................................   43 : |1 y( M$ ?  a0 k4 B
    3.  Operational Fuel Cell Voltages   ..............................................   45
    9 n" ?: W5 {) }  ?$ i3.1 Introduction  ................................................................................   45 % G; C, G8 N' N: f5 r
    3.2 Terminology  ...............................................................................   47
    / M& E, i) ~$ J1 s+ O! U5 z9 _; B3.3  Fuel Cell Irreversibilities – Causes of Voltage Drop   ..................   47 $ a5 p- B# {6 n+ w# f
    3.4  Activation Losses  .......................................................................   48
    . ]! A  l2 B; c* o  {5 y3.4.1  The Tafel Equation   ........................................................   48
    - x8 F/ [: D4 ~  `( I2 H3.4.2  The Constants in the Tafel Equation  ..............................   49 , g% n+ Z* d1 {: K+ K: W
    3.4.3  Reducing the Activation Overvoltage  .............................   52 * U+ w) p1 l" o! ^
    3.4.4  Summary of Activation Overvoltage  ...............................   53 2 z2 G5 ]1 D0 n
    3.5  Fuel Crossover and Internal Currents   .......................................   53
    ) w% c% g! {6 j7 J% }. e3 O3.6  Ohmic Losses   ............................................................................   56 # E2 X/ }/ s, {  l
    3.7  Mass Transport or Concentration Losses  ..................................   57
    $ R  _4 x9 p* R& D3.8  Combining the Irreversibilities   ...................................................   59 ' G8 X8 N9 d) Z% F' M; k4 Z* @
    3.9  The Charge Double Layer   .........................................................   61 0 o% W& p: L9 {- \
    3.10  Distinguishing the Different Irreversibilities  ................................   63
    : d- @; g0 F. w: _) v3 {3 BReferences   .........................................................................................   66 & t+ s7 {! g2 U7 J
    4.  Proton Exchange Membrane Fuel Cells  ................................   67
    " z1 L# D) ]/ H) m! R4.1 Overview  ....................................................................................   67
    ( M7 c4 j% D9 ]! q4.2  How the Polymer Electrolyte Works   ..........................................   69
    9 x: L6 q6 [- @; S4 c( U4.3  Electrodes and Electrode Structure   ...........................................   72
    3 l9 c; {: O8 x4.4  Water Management in the PEMFC  ............................................   75
    - l) u  ?" ?8 a1 S4.4.1  Overview of the Problem  ................................................   75 ' q! j2 t) U! [* V
    4.4.2  Airflow and Water Evaporation   ......................................   76
    % m: s3 j  i6 ?( w7 L4.4.3  Humidity of PEMFC Air   ..................................................   80
    . O9 r+ _0 V4 {; |2 M4.4.4  Running PEM Fuel Cells without Extra Humidification   ..   83
    ) J0 y& D' l: ]4.4.5  External Humidification – Principles  ...............................   85 - ~/ `$ \  \/ o5 Q
    4.4.6  External Humidification – Methods   ................................   87 ( {# @, h  i5 x' E
    4.5  PEM Fuel Cell Cooling and Air Supply   ......................................   90
    + M  l0 w# N! s4.5.1  Cooling Using the Cathode Air Supply  ...........................   90
    6 q% k. f8 _; m9 `6 g) L4.5.2  Separate Reactant and Cooling Air   ...............................   91
    6 Q9 b/ d3 V# V0 E: u4.5.3  Water Cooling of PEM Fuel Cells   ..................................   93
    ' _1 H$ ?$ j( x; ~9 Z' _4.6  PEM Fuel Cell Connection – the Bipolar Plate   ..........................   94 9 E2 S+ A3 ]  Q7 Q. q8 j) s
    4.6.1 Introduction  ....................................................................   94 # d( e" S$ x2 g! z, y4 {7 `
    4.6.2  Flow Field Patterns on the Bipolar Plates   ......................   94
    + S5 [+ Q: `  q3 D2 F4.6.3  Making Bipolar Plates for PEM Fuel Cells   .....................   96
    : S, O# _# A7 K; o8 `7 |4.6.4  Other Topologies   ...........................................................   100
    ( C( N7 c5 i& ?4.7  Operating Pressure   ...................................................................   102
    8 S2 N5 q; x! O' q7 B5 b3 N# b, t4.7.1  Outline of the Problem   ...................................................   102 ) Q% [3 b+ B4 ]' q. [8 z! I
    4.7.2  Simple Quantitative Cost/Benefit Analysis of Higher
    - l3 a9 E) D& `' U" Y; LOperating Pressures   ......................................................   103
    1 z8 e5 `  f$ f0 Z4.7.3  Other Factors Affecting Choice of Pressure   ..................   108
    # {8 B+ S! s" ^0 S4.8  Reactant Composition   ...............................................................   110 9 I4 e3 g4 h3 Z$ q2 C' Z8 u  M; ^
    4.8.1  Carbon Monoxide Poisoning  ..........................................   110 / O% N+ n0 A0 E5 u5 Z' A
    4.8.2  Methanol and Other Liquid Fuels  ...................................   111 3 t3 i7 k- U3 L; W* f) y
    4.8.3  Using Pure Oxygen in Place of Air  .................................   111 + c% t$ N1 G% ?$ q+ `' L. ~
    4.9  Example Systems   ......................................................................   112
    ( d* C) f* |) n2 l3 b3 Z5 ~2 v4.9.1  Small 12-W System   .......................................................   112
    6 ]5 h7 ~" i' @0 a6 s& s4.9.2  Medium 2-kW System  ....................................................   114 - \- o% @% m7 j
    4.9.3  205-kW Fuel Cell Engine   ...............................................   117 % ~9 ?0 ]* h1 ]4 b+ p8 ]. r6 f4 o
    References   .........................................................................................   118 ; Z% }! v) e+ e3 ^# i1 T
    5.  Alkaline Electrolyte Fuel Cells   ...............................................   121 + U0 ^; k7 k9 K# |9 ~
    5.1  Historical Background and Overview  .........................................   121
    ' @3 q# M- X& e- j- O9 F5.1.1  Basic Principles   .............................................................   121
    & J# ]: M& k- m. G+ T  D5.1.2  Historical Importance   .....................................................   121 2 N( x7 w( \. `9 j! b/ x
    5.1.3  Main Advantages   ...........................................................   122
    2 L4 D8 L2 V7 \  T" s5.2  Types of Alkaline Electrolyte Fuel Cell   ......................................   124 3 U# x" X! g% U
    5.2.1  Mobile Electrolyte   ..........................................................   124 % I, H+ }# P2 D# D4 f5 R  k2 T: o
    5.2.2  Static Electrolyte Alkaline Fuel Cells  ..............................   127
    # x/ G) n' p( |( g5.2.3  Dissolved Fuel Alkaline Fuel Cells  .................................   129 1 S+ k4 M4 R; `4 E
    5.3  Operating Pressure and Temperature   .......................................   132
    % H0 u6 n: O) I1 j  C. ~5.4  Electrodes for Alkaline Electrolyte Fuel Cells   ............................   134
    6 x- R. h* x; z& H# t% w5.4.1 Introduction  ....................................................................   134   S2 B: J  m/ ]$ D" q+ ^. F8 x
    5.4.2  Sintered Nickel Powder   .................................................   134 # B# Y5 s" P: b& [% C5 t
    5.4.3 Raney Metals  .................................................................   135
      }2 j3 Z4 |' x8 P1 l5.4.4  Rolled Electrodes  ...........................................................   135
    2 ?: d: e8 o, A  Y# g5.5  Cell Interconnections   .................................................................   137
    ' ?+ O& I$ G  f- y" ?0 f! o/ x5.6  Problems and Development   ......................................................   137 * l  r* E5 ?  ^8 F: V' Z6 k
    References   .........................................................................................   138
    1 k' G- ]/ o$ X6.  Direct Methanol Fuel Cells   .....................................................   141 7 V0 I% t5 F; s( L; A1 f2 q
    6.1 Introduction  ................................................................................  141
    , U& O. Y  e" @9 D4 z. [6.2  Anode Reaction and Catalysts   ..................................................   143
    ! ~& y- ]" h$ q! v% F. B6.2.1  Overall DMFC Reaction   .................................................   143 2 I# ]2 v6 L. M; h4 P
    6.2.2  Anode Reactions in the Alkaline DMFC  .........................   144
    ; ?* r( ~' J3 [# a: B6.2.3  Anode Reactions in the PEM Direct Methanol FC   .........   144 / B5 k% m2 I8 v4 c" w2 ~
    6.2.4  Anode Fuel Feed   ...........................................................   146
    1 d8 H: s8 a% ?5 R8 @( P6.2.5  Anode Catalysts  .............................................................   147
    - u# i0 V& t- |6.3  Electrolyte and Fuel Crossover   .................................................   148 # B# _% N  b8 D2 w
    6.3.1  How Fuel Crossover Occurs   ..........................................   148
    9 F& b. Q+ Q2 L* g1 K6.3.2  Standard Techniques for Reducing Fuel Crossover   ......   149 1 {8 o- b* K/ l3 i( w7 {2 B
    6.3.3  Fuel Crossover Techniques in Development   .................   150 $ j7 G( n. D. X/ K0 |
    6.4  Cathode Reactions and Catalysts   .............................................   151 7 }2 X: q5 b$ C+ Q: ^$ U
    6.5  Methanol Production, Storage, and Safety   ................................   152
    0 w* |8 q6 w. R6.5.1  Methanol Production   ......................................................   152 : g; O+ f6 D- C* ~$ `. T# Q$ ^
    6.5.2  Methanol Safety   .............................................................   153
    / l. l5 C0 j' X1 J6.5.3  Methanol Compared to Ethanol   .....................................   155
    " P' p7 z5 ]! S) u8 X% g- H' c6.5.4  Methanol Storage   ..........................................................   156
    : }& Z8 s$ k' L" C2 m6.6  Direct Methanol Fuel Cell Applications   ......................................   157 6 t. p4 T4 ]) ^6 o1 i- P7 Q6 M& t) i( l
    References   .........................................................................................   160 ) y& `9 U% L, i( J( Q7 ~: c
    7.  Medium and High Temperature Fuel Cells   ...........................   163 ( s- S1 s( X7 M* H: h; m
    7.1 Introduction  ................................................................................  163   y8 n2 f  _8 O; b! _% b
    7.2  Common Features   .....................................................................   165 7 U0 b1 u( C; t- ~) ~  w
    7.2.1  An Introduction to Fuel Reforming   .................................   165 # e1 W% C8 u5 ^1 t; ?7 N
    7.2.2  Fuel Utilization   ...............................................................   166   m, k$ \4 b, f) A8 j
    7.2.3  Bottoming Cycles   ...........................................................   168 ) m! O3 \; B# ^" Z. E
    7.2.4  The Use of Heat Exchangers – Exergy and Pinch
    ) ~- Y# t1 c6 O+ NTechnology   ....................................................................   174 * R& f0 V' V4 Y8 m
    7.3  The Phosphoric Acid Fuel Cell (PAFC)   .....................................   177 ; g7 ^. u) j) h$ ^5 m7 X
    7.3.1  How It Works   .................................................................   177
    + V4 x8 L' l) ?. Q7.3.2  Performance of the PAFC  ..............................................   182 9 B/ U! p7 M( ~" S8 u0 `) C
    7.3.3  Recent Developments in PAFC   .....................................   184 4 D1 z2 M, Q2 G# Z2 n
    7.4  The Molten Carbonate Fuel Cell (MCFC)   ..................................   187
    ; x7 `- [5 r1 q" y5 i/ V7.4.1  How It Works   .................................................................   187 ' p/ Q6 X/ U  u+ f# ?& _" A  Z' K
    7.4.2  Implications of Using a Molten Carbonate Electrolyte   ...   190
    * a* u0 i+ V( {$ [4 \7 B/ {1 p  G7.4.3  Cell Components in the MCFC   ......................................   190
      ?% A8 u/ i  w! G7.4.4  Stack Configuration and Sealing  ....................................   195 / ^' [) N" n" o( J
    7.4.5  Internal Reforming   .........................................................   196
    $ {% J/ h# e5 \8 G" z7.4.6  Performance of MCFCS  .................................................   198 2 S& j! c! l' `! V$ A
    7.4.7  Practical MCFC Systems   ...............................................   202   f. g3 M- ~2 H
    7.5  The Solid Oxide Fuel Cell   ..........................................................   207 & |2 C9 M/ N# l' j, i1 Y
    7.5.1  How It Works   .................................................................   207 " u$ ~- q6 E+ h
    7.5.2 SOFC Components  ........................................................   209 6 X2 z8 ~- P& ?# B4 m" x+ f# o- L% b) i
    7.5.3  Practical Design and Stacking Arrangements for the + j1 Q7 [4 C9 f) c, o5 @
    SOFC   .............................................................................   213 2 O# o. z& F, r+ a; {4 y
    7.5.4  SOFC Performance   .......................................................   220
    . ]/ O/ E) q1 {" Y& z/ x/ O7.5.5  SOFC Combined Cycles, Novel System Designs and   x$ {$ o" c( n: U2 R
    Hybrid Systems  ..............................................................   221
    . n- n* G$ Z. J4 P7.5.6  Intermediate Temperature SOFCs  .................................   225 , s4 x3 y; h! [3 g
    References   .........................................................................................   226 9 g! H' M! c& M# t6 V
    8.  Fuelling Fuel Cells   ..................................................................   229 0 t" x  O9 E# c; g: w6 N+ {- U$ f/ S
    8.1 Introduction  ................................................................................  229
    4 J3 h  R) j) ^8 y8.2  Fossil Fuels   ...............................................................................   232 2 ~& @% r3 P' Y) W7 B: x# @
    8.2.1 Petroleum  ......................................................................   232
    % a3 i) a0 o+ E( A8.2.2  Petroleum in Mixtures: Tar Sands, Oil Shales, Gas & U  e9 J9 y7 u
    Hydrates, and LPG   ........................................................   233
    ' a& ]# l% J- Y' X9 h4 C# ~$ a3 r8.2.3  Coal and Coal Gases  .....................................................   234
    ! E- p: ]8 b* n" K" C8.2.4  Natural Gas  ....................................................................   235 1 n/ T9 O. ]) i6 ]  l
    8.3 Bio-Fuels  ...................................................................................  236 0 {* m6 i- \0 z$ |8 ?) D
    8.4  The Basics of Fuel Processing   ..................................................   238 ; i: o- J. `# F: z5 `  L% d
    8.4.1  Fuel Cell Requirements   .................................................   238
    3 ]; Q" @* v( r1 C) z8.4.2 Desulphurization  ............................................................   239   n+ {2 n4 j) y; I6 w( h7 j
    8.4.3  Steam Reforming   ...........................................................   241 6 T8 n* R8 T1 d6 V2 Q" Q0 a; O
    8.4.4  Carbon Formation and Pre-Reforming  ...........................   244 ! g5 g- j& J) x4 @
    8.4.5  Internal Reforming   .........................................................   246 ( D" j& i( ~2 h" d4 i
    8.4.6  Direct Hydrocarbon Oxidation  ........................................   248
    ! H5 i' I$ n" z) @- K1 _8.4.7  Partial Oxidation and Autothermal Reforming  ................   248 + |9 p- R: }+ O
    8.4.8  Hydrogen Generation by Pyrolysis or Thermal # S0 g# T* a# _8 _. u8 p3 P5 P
    石皮解ing of Hydrocarbons   .............................................   250 , O( ^; @4 M- _5 O
    8.4.9  Further Fuel Processing – Carbon Monoxide Removal   .   250 ) ~/ |. A" T4 l) [5 i' p) F- t
    8.5  Practical Fuel Processing – Stationary Applications  ..................   252 # X3 v" @  w1 I) I$ y/ W% W( @4 l
    8.5.1  Conventional Industrial Steam Reforming   .....................   252
    + l- d* B. O; P) K8.5.2  System Designs for Natural Gas Fed PEMFC and
    $ {- d( E2 j" B5 _: k) h9 `PAFC Plants with Steam Reformers  ..............................   253 % v* m1 C3 |$ @9 ^1 g* m& n0 q
    8.5.3  Reformer and Partial Oxidation Designs   .......................   257
    / \$ k" D& `1 t8.6  Practical Fuel Processing – Mobile Applications   .......................   263
    ' G/ j* ?% L) @8 Q* @# G) i8.6.1  General Issues  ...............................................................   263 $ ?, Q* Z0 _% S2 h0 w7 h7 S
    8.6.2  Methanol Reforming for Vehicles  ...................................   264
    9 p: y) E6 u- t$ ^" r; j4 ?) R8.6.3  Micro-Scale Methanol Reactors  .....................................   267
    * w4 {- G) o% ~) G2 Q: T8.6.4  Gasoline Reforming   .......................................................   269 ; h  Z* Q9 j( A5 t/ R) ^. ^
    8.7 Electrolysers  ..............................................................................  270
    8 j6 ]/ H& f6 }/ H6 O- a8.7.1  Operation of Electrolysers   .............................................   270 % H5 m8 Q- o# C. O
    8.7.2  Applications of Electrolysers   ..........................................   272
    1 _8 u3 D0 _/ M: d# r8.7.3  Electrolyser Efficiency  ....................................................   272 9 \; C2 F! p9 j7 Z& V+ K
    8.7.4  Generating at High Pressure   .........................................   273
    ! U& m: ~* \, z" R6 }% F7 U8.7.5 Photo-Electrolysis  ..........................................................   275 3 [2 |  G8 l; z3 k/ ?0 {
    8.8  Biological Production of Hydrogen   ............................................   275 1 `: _5 N* F( [" }, p
    8.8.1 Introduction  ....................................................................   275
    : E# _1 ?0 P, C0 N8.8.2 Photosynthesis  ..............................................................   276
    / E, l6 N6 B# t8.8.3  Hydrogen Production by Digestion Processes  ...............   278
    % F3 u! m! S0 P% t2 C8.9  Hydrogen Storage I – Storage as Hydrogen   .............................   279
    & i' K1 p  Y/ u* O$ _& Z# h8.9.1  Introduction to the Problem  ............................................   279 % k" a! s9 n, ?1 o' }% u2 D: c3 ?
    8.9.2 Safety  .............................................................................   280
    4 B- Q/ a7 B. F" @1 a% M( o8.9.3  The Storage of Hydrogen as a Compressed Gas  ..........   282 * c* k3 o1 r* ?/ P/ Q
    8.9.4  Storage of Hydrogen as a Liquid   ...................................   284 & E& a4 h7 U. `. ?$ G. f
    8.9.5  Reversible Metal Hydride Hydrogen Stores  ...................   286 . f0 B! ]6 h7 Z
    8.9.6  Carbon Nanofibres  .........................................................   289 ! W" x& V8 z1 E/ i" Q, E
    8.9.7  Storage Methods Compared  ..........................................   291 / p* X' P9 }" e. r
    8.10  Hydrogen Storage II – Chemical Methods  .................................   293
    % a7 G2 Y3 R% V* i) e  x6 k8.10.1 Introduction  ....................................................................   293
    + ?7 U9 Y* W+ |+ @- r, E+ t7 H8.10.2 Methanol  ........................................................................   293
    / s8 ]  b2 n; T, T; b% F8.10.3  Alkali Metal Hydrides   .....................................................   295
    5 ]- y2 U  ?1 w+ T$ Z8 r/ p5 u( `8.10.4  Sodium Borohydride   ......................................................   297 ! Z' l! Z' B$ ?  h& }
    8.10.5 Ammonia  ........................................................................   301
    9 p4 t  I+ Y% O! G; T$ e0 B8.10.6  Storage Methods Compared  ..........................................   304 6 t$ X" r- ~5 b/ y
    References   .........................................................................................   305 # c1 r) b* {) Y4 Q
    9.  Compressors, Turbines, Ejectors, Fans, Blowers, and
    7 }. [" B0 x. l5 e2 s7 z6 B& f$ ?Pumps  ......................................................................................   309
    7 o6 Y% i/ u4 Y/ Q9.1 Introduction  ................................................................................  309
    / M& L% U; S' j9.2  Compressors – Types Used   ......................................................   310
    / y5 U/ m! @3 v! g) ^9.3  Compressor Efficiency  ...............................................................   312 % R9 ^2 Q/ b$ W6 u+ W" z
    9.4  Compressor Power   ....................................................................   314 + i7 R( O; ~, |3 c+ S4 [* {. d3 ]. {
    9.5  Compressor Performance Charts   ..............................................   315 ! G* {' W  ?6 y6 o) B7 w$ E' w
    9.6  Performance Charts for Centrifugal Compressors  .....................   318 + Z3 E( ~$ e- U
    9.7  Compressor Selection – Practical Issues   ..................................   320 5 v$ c3 o% _. E( l1 k+ g* u* B
    9.8 Turbines  .....................................................................................  321
    + u4 J' S/ I* s: g9.9 Turbochargers  ...........................................................................  325
    3 Q  s  K. j, [- v$ k8 J" B* a; ]9.10  Ejector Circulators   .....................................................................   326 ! U$ i  o+ D# F1 ]% S
    9.11  Fans and Blowers   ......................................................................   327
      n/ x" D$ l# G1 f$ [) x, \9.12 Membrane/Diaphragm Pumps  ...................................................   328
    5 K6 X) G. v8 dReferences   .........................................................................................   330
    1 v: G. L7 }# p0 b! E10.  Delivering Fuel Cell Power  .....................................................   331
    3 A2 h$ G, d5 _- k" v10.1 Introduction  ................................................................................   331 4 G: d8 ?, D, c) M
    10.2  DC Regulation and Voltage Conversion   ....................................   332 5 x+ @0 ~0 N' Z
    10.2.1  Switching Devices  ..........................................................   332
    ) N0 K( z. Y, ?9 A10.2.2  Switching Regulators   .....................................................   334
    0 [$ d- f( O, z2 K+ [. O10.3 Inverters  .....................................................................................   339
    ( {- f; G1 z; G# ~- h/ c10.3.1  Single Phase  ..................................................................   339
    5 w( n% z7 p. E. r( l10.3.2  Three Phase   ..................................................................   344
    7 D, c+ f4 {5 ~10.3.3  Regulatory Issues and Tariffs   ........................................   346
    ; z7 O' M  A# G5 z7 C( M7 J10.3.4  Power Factor Correction   ................................................   348
    6 R6 s6 a, E4 c$ l1 L10.4  Electric Motors   ...........................................................................   349
    3 V1 @4 t0 H( u" s8 Y: B0 M5 T1 N10.4.1  General Points   ...............................................................   349 8 k1 k  m" {( n7 P9 r* e, ~
    10.4.2  The Induction Motor   .......................................................   350 * `* ~6 ~9 r2 N6 T; m" H
    10.4.3  The Brushless DC Motor  ................................................   352 & G* O4 p0 f0 i8 [1 ~
    10.4.4  Switched Reluctance Motors   .........................................   355
    9 G8 [4 t& ^$ u& D3 e- o. ?10.4.5  Motors Efficiency   ...........................................................   357 0 F; G6 L+ F2 t( I/ K. t! B
    10.4.6  Motor Mass   ....................................................................   361
    1 M( q, I$ ]' E# P& o" l10.5  Fuel Cell/Battery or Capacitor Hybrid Systems   .........................   362
    / t0 M9 [$ o0 WReferences   .........................................................................................   367 1 |# g* r9 m! i
    11.  Fuel Cell Systems Analyzed   ..................................................   369 5 z1 w7 q3 t5 W* P$ F
    11.1 Introduction  ................................................................................   369
    2 `3 d# @  j+ o& P; x11.2  Energy Systems   ........................................................................   370 - x8 A8 w" H( K: r
    11.3 Well-To-Wheels Analysis  ...........................................................   371
    * `; x8 f2 \+ q+ S  g11.3.1  Importance of Well-to-Wheels Analysis   .........................   371 , {/ L3 r8 N( T$ o5 j
    11.3.2 Well-to-Tank Analysis   ....................................................   372 . f  n) T( l- _: I  q
    11.3.3  Main Conclusions of the GM Well-to-Wheels Study   ......   374 5 ^% |8 l- V& `4 H, m
    11.4  Power-Train or Drive-Train Analysis  ..........................................   375
    ' b: y1 X' a& ?: i& [& q11.5  Example System I – PEMFC Powered Bus  ...............................   377 6 n* v* n% e4 \1 q
    11.6  Example System II – Stationary Natural Gas Fuelled System  ...   382
    ( ]+ h0 f3 g$ s& T5 T* ]$ [11.6.1 Introduction  ....................................................................   382 9 U0 J( u, B  Z6 [; N3 x
    11.6.2  Flow Sheet and Conceptual Systems Designs   ..............   382 9 v2 j& B! O: \: B
    11.6.3  Detailed Engineering Designs   .......................................   386 & x3 z4 r% s7 i0 C0 G
    11.6.4  Further Systems Analysis   ..............................................   387
    $ q7 _; |6 I& C* z9 l  W3 O3 @11.7  Closing Remarks   .......................................................................   388
    : q" U' M0 [4 YReferences   .........................................................................................   389
    ! q" z, S( z( R! _2 J( a2 OAppendices
    ' M4 e* y( D. r$ e8 b& E4 r: y, O( yAppendix 1. Change in Molar Gibbs Free Energy Calculations  .........   391 4 O. Q' B( V2 F
    A1.1 Hydrogen Fuel Cell   ........................................................   391 : V3 i/ y) B- f/ G: C
    A1.2 The Carbon Monoxide Fuel Cell   ....................................   393 . _" y8 Z# A" M8 O. r
    References   .............................................................................   394
    2 I: j/ G' ~4 v7 E$ N) ^  wAppendix 2. Useful Fuel Cell Equations  .............................................   395
    $ n2 a3 Q% k5 i6 ?+ qA2.1 Introduction  ....................................................................   395 4 D: \* i% I5 v3 Y3 W2 b$ a& F
    A2.2 Oxygen and Air Usage  ...................................................   396
    1 T; z4 [% {) E5 J: ^* d4 pA2.3 Air Exit Flow Rate   ..........................................................   397
    4 W. H& r9 V& F1 R1 rA2.4 Hydrogen Usage   ............................................................   398
    7 V1 C- J8 M! v) Y# ?8 WA2.5 Water Production   ...........................................................   399 + Y4 {4 ]8 t: M  S5 s
    A2.6 Heat Produced   ...............................................................   399
    3 E/ K* n; k7 p' a- D  pIndex   ...............................................................................................  401
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-6-16 16:46:45 | 显示全部楼层
    恩 这本书我手里也有 写的比较详细
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    开心
    2016-3-17 22:07
  • 签到天数: 2 天

    连续签到: 1 天

    [LV.1]初来乍到

    累计签到:2 天
    连续签到:1 天
    发表于 2009-6-16 16:46:45 | 显示全部楼层
    第二本比较新 06年出的 / V' W) c) u3 b4 u" u3 T: g7 Z
    CONTRIBUTORS xvii
    / S( q9 `2 P# x9 n$ m6 n+ A- iFOREWORD xix! i- P% f2 e+ J1 l2 c
    PREFACE xxi
    3 q! X. Z/ J$ ^" O0 \ACKNOWLEDGMENTS xxiii* a% G2 l  \4 Z! }
    ABOUT THE AUTHORS xxv
    2 d( P' e# q0 N1 `1 ALTERNATIVE SOURCES OF ENERGY 1
    ) r3 S* R8 O* [* P1.1 Introduction 1* X+ {$ V0 j. ~# f, w' @* J
    1.2 Renewable Sources of Energy 2
    " \4 C6 ^! A9 L1.3 Renewable Energy Versus Alternative Energy 4
    5 r1 ^% M5 a) Q, V" I- J1.4 Planning and Development of Integrated Energy 8
    - i4 v& S" H6 h6 u9 f# }1.4.1 Grid-Supplied Electricity 9
    3 B  t6 v8 }1 D1.4.2 Load 101 P. P0 i! M1 s/ v2 Z% y
    1.4.3 Distributed Generation 107 S% P* O7 @( @1 s2 |. w
    1.5 Renewable Energy Economics 11/ ^' _& m4 B5 F% _
    1.5.1 Calculation of Electricity Generation Costs 128 B9 }+ p; Y' P  `
    1.6 European Targets for Renewables 14
    ; K" s9 Z6 x" W, v+ O9 W  F/ ^1.6.1 Demand-Side Management Options 15
    + s$ u6 x0 G  }5 E. _  m5 B8 `1.6.2 Supply-Side Management Options 16, |# H: ~, d" p+ P- E2 ^
    1.7 Integration of Renewable Energy Sources 192 A$ }8 N- i/ X/ r3 E8 v6 @
    1.7.1 Integration of Renewable Energy in the United States 20
    ( X) M5 X5 C& E, V) u1.7.2 Energy Recovery Time 21! M( L5 J+ ]5 J. w1 y
    1.7.3 Sustainability 23
    5 x# u. t- d( V$ w5 M1.8 Modern Electronic Controls of Power Systems 26* Z" Q% I) s' f9 Q
    References 27/ _6 K, ]' C! F1 g2 i& R
    2 PRINCIPLES OF THERMODYNAMICS 284 x5 B4 m7 c: s, ^3 k# x& C
    2.1. Introduction 287 C- I  }# ]8 t# T; ?/ X+ H
    2.2. State of a Thermodynamic System 299 V  ~2 y- G: ?3 ^. p
    2.3. Fundamental Laws and Principles 36! V# n* ~+ U) G" U
    2.3.1 Example in a Nutshell 37
    & h1 Q; v; m9 |2 V% M2.3.2 Practical Problems Associated with Carnot Cycle Plant 40
    # m: U  M7 \' p6 ]2.3.3 Rankine Cycle for Power Plants 41
    # \& F, B2 I( G; Y1 s1 f2.3.4 Brayton Cycle for Power Plants 448 P$ R0 V& p! V8 H& g* e" |9 m
    2.3.5 Energy and Power 46" c! I. c1 b: R" ?0 S" Q
    2.4 Examples of Energy Balance 47
    6 N2 {% B1 M8 j7 A3 O2.4.1 Simple Residential Energy Balance 476 Q" j5 |. w  L$ h, A5 |2 I8 S
    2.4.2 Refrigerator Energy Balance 48
    ' O+ n3 n+ p, J1 w' W2.4.3 Energy Balance for a Water Heater 49& Y# Z0 D+ r' ^0 g; O
    2.4.4 Rock Bed Energy Balance 51
    : K3 A. Q; ^' n8 v: X5 G+ J2.4.5 Array of Solar Collectors 51: m, D- Q, f& G/ v9 P* @
    2.4.6 Heat Pump 527 b8 _; r, ]8 m
    2.4.7 Heat Transfer Analysis 53( D# d+ p0 n1 K# R3 X" `
    2.5 Planet Earth: A Closed But Not Isolated System 54
    & K6 S* W3 r, o8 G4 RReferences 561 f0 h) T! X2 d
    3 HYDROELECTRIC POWER PLANTS 572 I' U1 p0 Q( h' X
    3.1 Introduction 57" v) h8 b+ I) w& ]$ E
    3.2 Determination of the Useful Power 58
      p9 W/ c* b+ f3.3 Expedient Topographical and Hydrological Measurements 60
    # g  j1 G5 n. K* X- h: H3 `, d3.3.1 Simple Measurement of Elevation 60
    , D5 W2 g. J0 J( d% ~5 I3.3.2 Global Positioning Systems for Elevation Measurement 60
    . C  S* {3 K" k4 f3.3.3 Specification of Pipe Losses 62- \& ]+ ?9 R1 }
    3.3.4 Expedient Measurements of Stream Water Flow 63
    - D+ g& l, a  X' x5 E( w2 ?3.3.5 Civil Works 67
    9 E4 K  u+ B; T3.4 Generating Unit 67
    % g" Y7 y' G% I+ a3.4.1 Regulation Systems 676 W+ o. b) M1 p4 ~" B2 ], m( ?
    3.4.2 Butterfly Valves 68
    . y2 g6 T9 }0 o: O6 Y# r5 ]3.5 Waterwheels 68, n+ w* \; z: \0 S6 I( V" ~
    3.6 Turbines 709 Y+ g. m0 }! X9 u
    3.6.1 Pelton Turbine 71
    " n2 j; C$ _) z5 x9 ?4 A3.6.2 Francis Turbine 74( J4 s9 m) W5 N
    3.6.3 Michel–Banki Turbine 77- W4 D0 L5 _2 ~: |' q% y/ @
    3.6.4 Kaplan or Hydraulic Propeller Turbine 79! U' j, j& j, W/ a1 V
    3.6.5 Deriaz Turbines 80
    ' N& {& E) q7 T4 V3.6.6 Water Pumps Working as Turbines 80
    ) S9 A  \( d- u- R) w2 Y0 u+ \3.6.7 Specification of Hydro Turbines 81
    ( E6 ^$ Q% y* g- _; C; _9 Z5 nReferences 82; A; ^7 V( b6 Z: s
    4 WIND POWER PLANTS 84
    5 h0 Y1 c% f8 D. L6 h4.1 Introduction 84
    9 v) G% Q' P1 G, _4.2 Appropriate Location 85
    . T$ Y6 x# G' }' x. `5 N4.2.1 Evaluation of Wind Intensity 85
    + M/ }( U# V7 j( f4.2.2 Topography 93
    & k: {9 Y. H! ^/ _+ \8 m3 g4.2.3 Purpose of the Energy Generated 95
    5 I6 n3 }. b5 C) {4.2.4 Means of Access 954 E) ^# F  V! H& ?, M/ L) O
    4.3 Wind Power 95
    ( h7 O- o* |3 e' n4.4 General Classification of Wind Turbines 97
    9 X, B( q2 m) c" \7 d" k7 W/ C4.4.1 Rotor Turbines 99
    , H1 Y  \! v( Z7 T4 s4.4.2 Multiple-Blade Turbines 99& u9 L+ G) y  Q- T
    4.4.3 Drag Turbines (Savonius) 100
    2 L, R$ `. e, W4 G: p5 f4.4.4 Lifting Turbines 101# u8 F6 ]# Y/ q# z2 c5 v
    4.4.5 System TARP–WARP 102
    + V' o2 p! ^8 b4 P2 `4.4.6 Accessories 103
    $ w7 s' `$ l  c6 N6 i% g0 ]9 m4.5 Generators and Speed Control Used in Wind Power Energy 104, I2 a7 n* A. ?  {
    4.6 Analysis of Small Generating Systems 107
    ) `& R9 x9 v. PReferences 110: m3 A) X# \3 u: r1 }; U. ]
    5 THERMOSOLAR POWER PLANTS 1124 z0 ]" P( U* S; o2 H+ R4 v
    5.1 Introduction 112
    + N2 H6 Z3 Q  F. h4 ~5.2 Water Heating by Solar Energy 112
    6 R/ B0 p; M5 p$ ?5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 115
    * g" A/ W! Z1 ^; l7 o5.4 Heating Domestic Water 118
    ! \) {7 Y( S5 u! I8 O- F5.5 Thermosolar Energy 119; g# P& r6 R! S3 m0 I9 ~
    5.5.1 Parabolic Trough 120: U/ T$ U3 B1 S: ^+ s! Z
    5.5.2 Parabolic Dish 122
    , z, w& I4 _, n7 Y8 a& Z( y5.5.3 Solar Power Tower 124) b) v5 I7 u% s$ \- A: H
    5.5.4 Production of Hydrogen 125
    % `/ Q2 v1 Y- r& ~" T  A9 ]" f: F5.6 Economical Analysis of Thermosolar Energy 1260 \3 Q- l  `. I+ p4 l: D: S5 P
    References 127& t+ ~1 C8 h5 l' r
    CONTENTS ix6 PHOTOVOLTAIC POWER PLANTS 129
    ; D$ ^# u0 `$ A* F, W6 N2 l6.1 Introduction 1299 z  y/ G4 l' b
    6.2 Solar Energy 130
    ! [6 v! u9 s4 p# V+ e/ j' \/ Y6.3 Generation of Electricity by Photovoltaic Effect 132! \+ `/ N0 X0 I: X; D! Q# ~
    6.4 Dependence of a PV Cell Characteristic on Temperature 135! R) n" r: D/ P" F# U
    6.5 Solar Cell Output Characteristics 137
    3 z1 P/ q& x& g+ {4 u. M/ |" m6.6 Equivalent Models and Parameters for Photovoltaic Panels 139
    " t( @; V3 o. V8 {9 G6.6.1 Dark-Current Electric Parameters of a Photovoltaic Panel 140: h, ]6 u; ^+ u# F
    6.6.2 Model of a PV Panel Consisting of n Cells in Series 142; H: d7 H$ a( N
    6.6.3 Model of a PV Panel Consisting of n Cells in Parallel 144
    6 p+ b6 b# W& b6.7 Photovoltaic Systems 145
    & K/ a) [  m/ [" _9 E( d$ i1 o6.7.1 Illumination Area 146) a+ V+ S: z$ R. c8 Z; V" I: X
    6.7.2 Solar Modules and Panels 146
    + N! E% d$ `- u' l) i2 |6.7.3 Aluminum Structures 146
    , t  \+ w) P+ Z& J6.7.4 Load Controller 148
    % `1 Q, I+ w( _3 q5 D2 |" ]; `9 V5 p6.7.5 Battery Bank 148
    # }/ g3 I9 w5 x! K; a) `9 B! h6.8 Applications of Photovoltaic Solar Energy 149; ~: a" \# ?* P* A# r' D
    6.8.1 Residential and Public Illumination 1493 l( E! s, a3 t4 Y
    6.8.2 Stroboscopic Signaling 150( ?- l& k! B6 M( Q2 ?0 ?' B
    6.8.3 Electric Fence 150
    ' k, M1 `6 M0 Q& }6.8.4 Telecommunications 151- ?- n: z. j: C, I5 x
    6.8.5 Water Supply and Micro-Irrigation Systems 151
    9 K& _9 Y  c8 r8 t- B1 H6.8.6 Control of Plagues and Conservation of' {5 E8 t# u+ x# \6 f
    Food and Medicine 153, T& p: E) `9 ^1 W3 [* X: Y$ K
    6.8.7 Hydrogen and Oxygen Generation by Electrolysis 1541 ?( E4 s8 u5 q7 Y2 M! Q, J
    6.8.8 Electric Power Supply 155
    . i! n0 I( F3 R% y6.8.9 Security and Alarm Systems 156. \3 ^/ l) S+ O' w2 d+ I! Z
    6.9 Economical Analysis of Solar Energy 156
    & a- l2 b+ d# r0 ~. HReferences 157
    ) O' Z8 S6 X$ @2 v: A/ @- I7 z, |7 POWER PLANTS WITH FUEL CELLS 159
    & z( G4 l2 J( f2 d7.1 Introduction 159; G9 a8 Y) M/ v
    7.2 The Fuel Cell 160
    3 A+ @# v+ t; T1 s/ @7.3 Commercial Technologies for Generation of Electricity 162/ q9 \( G1 n8 N* I* Z
    7.4 Practical Issues Related to Fuel Cell Stacking 1693 t% ]# c2 r' l/ ~5 o
    7.4.1 Low- and High-Temperature Fuel Cells 1697 J0 c4 L" p: ?% G- L
    7.4.2 Commercial and Manufacturing Issues 1703 r4 P4 A2 L, K" T
    x CONTENTS7.5 Constructional Features of Proton Exchange
    ) J- Y$ I' r% E/ c( kMembrane Fuel Cells 171
    6 I; c5 }( U' i/ Y5 S2 e7.6 Constructional Features of Solid Oxide Fuel Cells 173$ `; e  |0 S4 ^
    7.7 Water, Air, and Heat Management 1750 m$ H- M" B" @. A# l
    7.8 Load Curve Peak Shaving with Fuel Cells 176
    / C+ q( a; i9 S7.8.1 Maximal Load Curve Flatness at Constant Output Power 1761 ]/ o# R; P# {8 }8 |
    7.8.2 Amount of Thermal Energy Necessary 1781 U7 h) P6 U) Z. e5 M/ N
    7.9 Reformers, Electrolyzer Systems, and Related Precautions 180& Q' h/ z2 D: l3 x# [8 E
    7.10 Advantages and Disadvantages of Fuel Cells 181, i  P: b  g" r9 z
    7.11 Fuel Cell Equivalent Circuit 182
    $ N$ |$ J" J% f; E- V; u2 N! }7.12 Practical Determination of the Equivalent Model Parameters 188: u" M; w" |+ N, O, f/ G
    7.12.1 Example of Determination of FC Parameters 191
    . F) W2 _2 u* m  `7.13 Aspects of Hydrogen as Fuel 1949 G9 W1 A4 M0 A
    7.14 Future Perspectives 195" A# Q! ]. M& L
    References 196
    ' X' {* c: N* h) x* P& b, e8 BIOMASS-POWERED MICROPLANTS 198
    1 I; W: `% l* i1 U8 t! N" l8.1 Introduction 198
    * a# u3 K' u; p% d7 D8.2 Fuel from Biomass 2020 B0 r8 I7 D: z1 q" M
    8.3 Biogas 204
    ( W; G& Q  H! \2 z' x/ K8.4 Biomass for Biogas 205
    $ X( Q, ?5 v# ?8.5 Biological Formation of Biogas 2062 \+ n0 }  q$ M" |) j( J
    8.6 Factors Affecting Biodigestion 207
    - D+ v; ]# u+ g8.7 Characteristics of Biodigesters 2095 s" q9 Q; J. Y* @  _
    8.8 Construction of Biodigester 210( g7 H" `% G" S* u9 \# Y8 v8 @7 B
    8.8.1 Sizing a Biodigester 211
    $ {! u) B. F; }8.9 Generation of Electricity Using Biogas 211
    : o; Q" p2 V0 e, }References 214
    / n2 q/ B' @/ }$ o9 MICROTURBINES 215
    5 Y. l3 B1 u3 o& m+ s9.1 Introduction 215- h  Y7 S# J, `7 s
    9.2 Princples of Operation 2179 I  d$ G! h. K& e2 C5 w# C: j+ g
    9.3 Microturbine Fuel 219
    + U' _3 u. \7 e5 Q$ {8 Z9.4 Control of Microturbines 2201 S5 L7 u# W8 r) D1 H
    9.4.1 Mechanical-Side Structure 220
    $ C2 p1 _3 H7 J6 N  z9.4.2 Electrical-Side Structure 222
    4 I% ~* ~) {% U; }! K! f+ b3 F9.4.3 Control-Side Structure 224
    - A8 V+ D, k! h7 W* wCONTENTS xi9.5 Efficiency and Power of Microturbines 228
    " R( G$ U, y" ^0 j+ P; z9.6 Site Assessment for Installation of Microturbines 230' e1 Q- D8 @- f6 ~: \
    References 2317 J1 w8 X5 P# e+ V" |
    10 INDUCTION GENERATORS 2338 Q; W% Z2 A% N0 b
    10.1 Introduction 233
    . {4 L' ^% a; u1 G/ w' c2 S10.2 Principles of Operation 234+ V. G! _: r. d/ z
    10.3 Representation of Steady-State Operation 236
    0 u/ x1 h2 q% L2 X- |10.4 Power and Losses Generated 237
    1 D# U* g/ u& |% m" F. ^10.5 Self-Excited Induction Generator 2404 E3 W# e7 ^" [- T& R7 V2 ~
    10.6 Magnetizing Curves and Self-Excitation 242
    , v  w8 I  @8 }7 X10.7 Mathematical Description of the Self-Excitation Process 2432 B8 W) ?6 U: h: K
    10.8 Interconnected and Stand-Alone Operation 246
    % o" n1 a+ a! \# g! \10.9 Speed and Voltage Control 248
    , x% O- _/ N' a/ y, v3 B10.9.1 Frequency, Speed, and Voltage Controls 249
    7 R- h7 l( m% }. ?+ S% m10.9.2 Load Control Versus Source Control
    1 p  h8 S4 j2 ^' l' i4 Lfor Induction Generators 250
    ! l) t, T$ d, U# v$ M4 ^$ Z10.9.3 The Danish Concept 254) L! ^! b3 Q- G1 i4 P, q
    10.9.4 Variable-Speed Grid Connection 255
    / H; |! i& f! C3 C; a: N4 |10.9.5 Control by the Load Versus Control by
    : o$ f6 M$ h2 a& Q  {" X9 j' Mthe Source 2564 v  H9 u4 A+ K% h
    10.10 Economical Aspects 2589 a( Y' Z% [; w( S, l$ ]# O- K
    References 259! C1 ?4 T$ e  _. b% e! G' q$ \
    11 STORAGE SYSTEMS 262
    * B1 p. l* R' e  k11.1 Introduction 262' w. N( s0 Z" P% O* t+ ]" I" g
    11.2 Energy Storage Parameters 2653 D5 Y  l% l1 F" n+ D
    11.3 Lead–Acid Batteries 268
    . n1 c; D6 @3 g' K11.3.1 Constructional Features 268
    . E% ?& [+ [" Q! E: Q' M11.3.2 Battery Charge–Discharge Cycles 269
    4 \# b. ?" H9 ]  B" Z# {11.3.3 Operating Limits and Parameters 271+ H6 e' L* [$ ~0 p' G$ j9 ]& N
    11.3.4 Maintenance of Lead–Acid Batteries 273# e: V6 v$ E$ p. o0 y
    11.3.5 Sizing Lead–Acid Batteries for DG Applications 2736 s% L& c( l( E# @/ [8 L
    11.4 Ultracapacitors 276
    2 n8 E. j. U, e& h$ F11.4.1 Double-Layer Ultracapacitors 277* G5 l5 W& h# n8 q3 c# `# b
    11.4.2 High-Energy Ultracapacitors 2787 q* P" @% F/ ]/ ?* o# f( @
    11.4.3 Applications of Ultracapacitors 279
    ' ]/ n- @; n0 J+ S4 l$ ?1 cxii CONTENTS11.5 Flywheels 282* Y- D1 l1 D* |7 _- X& @' s
    11.5.1 Advanced Performance of Flywheels 282
    , l# U: R3 ]: B/ E11.5.2 Applications of Flywheels 282
    $ j* r3 f8 O4 }& l: t* q11.5.3 Design Strategies 2844 w% m) z5 m0 d# P0 i) r- h' V  |  N; v
    11.6 Superconducting Magnetic Storage System 286
    ' `; y4 v& @5 L11.6.1 SMES System Capabilities 287$ ~# j5 ]; {6 N  k9 @+ S) e
    11.6.2 Developments in SMES Systems 288
    4 Y; F+ r5 M5 Q8 \- F+ N& B11.7 Pumped Hydroelectric Energy Storage 290
    3 g  M. S3 Q& E11.7.1 Storage Capabilities of Pumped Systems 291
    ) E" _& k0 d7 b: }( U- O6 g  y11.8 Compressed Air Energy Storage 2929 P6 x5 A* i4 K. ]2 Y" ]1 W* L4 e" `
    11.9 Storage Heat 294, X' y" P$ l. a1 }
    11.10 Energy Storage as an Economic Resource 2955 Z7 q5 N% s' [# X2 y' [* U
    References 299
    6 H3 ^* R/ ?! X( K7 R12 INTEGRATION OF ALTERNATIVE SOURCES
    / v/ D# b; m% c- u+ ROF ENERGY 301
    % p2 u" O( }% r/ ~( t12.1 Introduction 301
    0 t; x* `% O. b) F. @12.2 Principles of Power Injection 302( n/ p, X! \# a8 |& F
    12.2.1 Converting Technologies 302& Y# B7 ^5 [* F( I/ z9 g
    12.2.2 Power Converters for Power Injection7 Z' M% Y0 j- Z+ Z, b6 e" Q: I( `+ G
    into the Grid 304
    ; C- `2 P. i! ?6 @12.2.3 Power Flow 3069 `' _6 g0 S2 z" f9 Y
    12.3 Instantaneous Active and Reactive Power
    , o4 X" R' y1 ~, o$ }# P% ^# t% HControl Approach 309
      G' n$ D3 k0 f12.4 Integration of Multiple Renewable Energy Sources 312
    5 @  }" E; u$ J7 |12.4.1 DC-Link Integration 315
    0 `5 {6 U7 Q; m+ I' M+ x12.4.2 AC-Link Integration 316- C* C: L  K7 N; O$ X$ S
    12.4.3 HFAC-Link Integration 317: G( t9 M. s7 k. ^, ^8 k/ \0 N; ]. }
    12.5 Islanding and Interconnection Control 3207 _) n/ G0 P, P/ q0 }' a
    12.6 DG Control and Power Injection 3255 W8 A  n& z; ?" L8 ]& N8 E. ~4 e
    References 331
    $ W. h' Q) ^7 [13 DISTRIBUTED GENERATION 333
    / L9 I& [, `" R; T' w  e, T13.1 Introduction 333
    2 f& G7 o" j- i13.2 The Purpose of Distributed Generation 335
    ; D8 G' [: L" g( d% e/ j5 F13.3 Sizing and Siting of Distributed Generation 338
    4 [' z* a- r5 a! Y3 B9 p13.4 Demand-Side Management 339' w8 V. F9 J9 t
    13.5 Optimal Location of Distributed Energy Sources 3403 e3 ]8 J5 W/ A. w, F7 y8 f; S9 q( s
    CONTENTS xiii13.5.1 DG Influence on Power and Energy$ K6 p. S! w6 R# _
    Losses 342
    . y$ N, @$ j" M/ U8 `13.5.2 Estimation of DG Influence on Power6 w% l# u) m8 @' h' \
    Losses of Subtransmission Systems 346
    $ R% p" d+ ~1 i( t+ J2 O8 f5 E13.5.3 Equivalent of Subtransmission Systems
    , W* |* ]/ u5 F) T% s) {/ [Using Experimental Design 348
    # l9 r* f, C) e; O% \13.6 Algorithm of Multicriterial Analysis 350
    ; u& E4 d' c4 ]3 i  RReferences 352
    2 z* r- a8 }0 x* F9 ?+ H/ M; K14 INTERCONNECTION OF ALTERNATIVE ENERGY
    : D$ R( T- C8 \# i2 L: XSOURCES WITH THE GRID 3548 i: x* k5 \, P" E' o2 y$ }
    Benjamin Kroposki, Thomas Basso, Richard DeBlasio,
    8 r& ~0 w  ]5 s) b6 J' Sand N. Richard Friedman
    3 y/ z) s2 j+ l+ t0 d14.1 Introduction 354
    # P! r& H, U' R* Q4 {& ~14.2 Interconnection Technologies 357" P+ J* |, [- z* D- Q
    14.2.1 Synchronous Interconnection 3576 ^6 A  {1 _+ s4 }. x+ v" A
    14.2.2 Induction Interconnection 3582 n3 }. g) h" C2 l
    14.2.3 Inverter Interconnection 3596 s, p7 |( N; r2 n3 Z0 i
    14.3 Standards and Codes for Interconnection 359
    - c% _5 n: r4 L: z4 E$ [2 d14.3.1 IEEE 1547 3603 G; q# O! _9 F9 X% h- D! {
    14.3.2 National Electrical Code 361" l" U' q; y- b4 @
    14.3.3 UL Standards 362* {, x2 s; F( f7 ?
    14.4 Interconnection Considerations 364, q$ R9 v( U  B
    14.4.1 Voltage Regulation 364
    5 F0 U- O. w; B* J14.4.2 Integration with Area EPS Grounding 3652 y4 U( X- m" L" Z1 |8 F
    14.4.3 Synchronization 365" E5 [6 k) T! M6 k
    14.4.4 Isolation 365, _: @6 f7 D& _- ~% T
    14.4.5 Response to Voltage Disturbance 366
    # T. p  N0 Q& C4 _4 ^* d14.4.6 Response to Frequency Disturbance 367
    % ~/ Z( ]# @' U0 @14.4.7 Disconnection for Faults 368) S) L# H, ^+ n* G3 G7 V& l: t
    14.4.8 Loss of Synchronism 369
    ( Y+ S0 f# H/ @8 f% C6 \/ P) O% q14.4.9 Feeder Reclosing Coordination 3692 n; H9 N4 V$ G1 S0 I
    14.4.10 DC Injection 3707 C2 Q* q: B) }1 h+ L
    14.4.11 Voltage Flicker 371
    + |( q- ]7 \8 Y+ x14.4.12 Harmonics 371( P$ N+ w7 w) h; o* t- q
    14.4.13 Unintentional Islanding Protection 373# F% C- b: J5 P( z: S. Y& n9 v, E
    14.5 Interconnection Examples for Alternative Energy Sources 373
    - T) B/ h" [# p5 ~14.5.1 Synchronous Generator for Peak Demand Reduction 375" }# z& O8 Q; Z; T, d: c# r! [  n
    xiv CONTENTS14.5.2 Small Grid-Connected Photovoltaic System 3757 W# R: |0 y8 b
    References 3787 G& V* a% o9 X0 V& Z! R
    15 MICROPOWER SYSTEM MODELING WITH HOMER 379  s. u; b( X4 V: N3 J
    Tom Lambert, Paul Gilman, and Peter Lilienthal- q( M  w2 d$ {, _; I3 u/ g
    15.1 Introduction 379
    . A" j; F. Y9 h, ]7 ~15.2 Simulation 381
    ! `) I- }. z5 D: o: i- b" k15.3 Optimization 385
    . _: M7 _0 T; G, O/ B4 ^% }" I15.4 Sensitivity Analysis 388
    4 o; f: n  |  `15.4.1 Dealing with Uncertainty 389% H3 X$ C$ g8 s0 e- I  j7 u' {6 A$ ^
    15.4.2 Sensitivity Analyses on Hourly Data Sets 391
    5 e* g) ^2 K5 u9 G15.5 Physical Modeling 3937 s% W, K7 P  c* K( i
    15.5.1 Loads 393
    + v( O: n. q0 v. `' F5 X2 ^3 b15.5.2 Resources 395# N7 U8 l7 ]7 i) Z
    15.5.3 Components 3977 |# N) ^9 x, V0 p8 ^
    15.5.4 System Dispatch 408
    " q. m! F" d6 o0 f3 r15.6 Economic Modeling 414
    & V+ u9 H4 j0 J4 @References 416) }0 K8 e& U, N/ ~2 V) p3 P8 h  D
    Glossary 416+ q3 r6 O; r/ {. L, a, j
    APPENDIX A: DIESEL POWER PLANTS 419" c% o* d; x# H1 k- r. H
    A.1 Introduction 419
    7 z( R# x' h/ V) S& ]A.2 Diesel Engine 420
    " g& o8 `3 i6 e, F5 b2 i/ }) l5 ~A.3 Principal Components of a Diesel Engine 421
    4 z& `% E6 H1 U* e; ?% m* H$ K. a3 n3 WA.3.1 Fixed Parts 421- w+ w9 {) l! S. h) E  K* y0 s
    A.3.2 Moving Parts 421
    8 W$ z* D) Q5 M- ^) S% z3 Z( X; MA.3.3 Auxiliary Systems 422
    2 q) M2 B# ~3 d' B* y: e+ MA.4 Terminology of Diesel Engines 422
    5 L$ v2 \$ C3 o9 B' d/ LA.4.1 Diesel Cycle 422+ n* k" ]* a0 E; g7 r+ Y7 B1 L9 u; s
    A.4.2 Combustion Process 424
    + `' k$ U4 M. }9 WA.5 Diesel Engine Cycle 4254 F! `1 ]( H3 i5 e" |9 R8 ~7 ]# q
    A.5.1 Relative Diesel Engine Cycle Losses 425
    1 d% a- Y  `/ R& Q. eA.5.2 Classification of Diesel Engines 426- V0 ~7 @  a# g+ A& Y1 A# M
    A.6 Types of Fuel Injection Pumps 427. O! E( V# Y* Z! u7 L# z
    A.7 Electrical Conditions of Generators Driven by
    ( D/ _6 M8 x- SDiesel Engines 427
    " ]) [# W" f5 Z+ p- m) TReferences 429
      _% H$ H' Z7 e6 r. v( M+ V3 L! bCONTENTS xvAPPENDIX B: GEOTHERMAL ENERGY 431
    0 Z$ U9 [) D: G+ ]1 jB.1 Introduction 431
      f9 b# R; z) T9 f! }7 RB.2 Geothermal as a Source of Energy 4326 q! k, M; o# C! ~8 T
    B.2.1 Geothermal Economics 4346 q. M8 W8 k0 f+ ?1 l
    B.2.2 Geothermal Electricity 435
    + i" w' q3 ?* U4 P/ S! ^7 V; E' LB.2.3 Geothermal/Ground Source Heat Pumps 436" \0 R7 ]' e6 n
    References 4377 x: m( r/ a9 h7 W- P
    APPENDIX C: THE STIRLING ENGINE 438" ^8 F3 S0 }2 l  j. C7 a- S3 U
    C.1 Introduction 438
    6 [, [4 S5 e* s& `C.2 Stirling Cycle 439
    # z6 L, t. s. UC.3 Displacer Stirling Engine 442
    ) O  F6 ]8 S; EC.4 Two-Piston Stirling Engine 444
    . p0 m( F; j+ Y2 h+ g% LReferences 446
    / ^1 \3 A( a5 X' w, UINDEX 447
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-6-16 16:50:16 | 显示全部楼层
    英文原版的,看不懂呀,还是谢谢。
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    擦汗
    2021-1-29 14:27
  • 签到天数: 8 天

    连续签到: 1 天

    [LV.3]偶尔看看II

    累计签到:9 天
    连续签到:1 天
    发表于 2009-6-16 21:59:29 | 显示全部楼层
    谢谢,英文的,看起来比较费劲。
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
  • TA的每日心情
    难过
    2021-4-5 10:03
  • 签到天数: 3 天

    连续签到: 1 天

    [LV.2]偶尔看看I

    累计签到:3 天
    连续签到:1 天
    发表于 2009-6-25 21:43:51 | 显示全部楼层
    英文,有些恐怖呀!
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-7-10 21:16:06 | 显示全部楼层
    好像看啊,就是看不到。地方地方 地方法大幅度大幅度飞 地方飞好想看啊,hao
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】

    该用户从未签到

    尚未签到

    发表于 2009-7-13 14:15:11 | 显示全部楼层
    谢谢,正需要这方面的资料
    "真诚赞赏,手留余香"
    还没有人打赏,支持一下
    帖文化:【文明发帖 和谐互动】 社区精神:【创新、交流、互助、共享】
    您需要登录后才可以回帖 登录 | 立即加入

    本版积分规则

    招聘斑竹

    小黑屋|手机版|APP下载(beta)|Archiver|电力研学网 ( 赣ICP备12000811号-1|赣公网安备36040302000210号 )|网站地图

    GMT+8, 2025-7-27 19:30

    Powered by Discuz! X3.5 Licensed

    © 2001-2025 Discuz! Team.

    快速回复 返回顶部 返回列表