|
电子图书
电子图书名: |
Fourier Analysis |
编者: |
E Stein, R Shakarchi |
内容简介: |
该书是美国普林斯顿大学的E Stein教授所著,E Stein教授是菲尔兹奖获得者陶哲轩的老师,本书由浅入深的讲述了傅立叶变换原理。从事信号或谐波分析的学者或研究人员可以参考。。。 |
所属专业方向: |
谐波分析、信号检测等 |
出版社: |
Princeton University Press |
来源: |
网络 |
马上加入,结交更多好友,共享更多资料,让你轻松玩转电力研学社区!
您需要 登录 才可以下载或查看,没有账号?立即加入
×
preface ) O) x1 E8 X: V R
chapter 1. the genesis of fourier analysis
. x1 B9 }# z; x3 L1 the vibrating string
1 V" C( ~% H6 Y( x7 H1.1 derivation of the wave equation * I7 t0 f o( O8 o
1.2 solution to the wave equation ' d/ n$ u( x7 z
1.3 example: the plucked string % H" T a) k+ G% s
2 the heat equation
6 ]1 C* O D+ v- P2.1 derivation of the heat equation 1 h$ [: m6 V; G- ~( \& [% y3 R3 e
2.2 steady-state heat equation in the disc
& Z7 C, w8 N- G9 H1 m3 exercises
! B% c Y9 e) S$ Q4 problem
( G5 @ b/ I5 H: l * ?# `2 s6 b# [* ~" X5 Z
chapter 2. basic properties of fourier series 2 Q) e: {1 i' ?4 ]
1 examples and formulation of the problem
( ^& u" L' I+ S( T+ d2 w* _ d1.1 main definitions and some examples % U* l! C% b, c F+ \
2 uniqueness of fourier series 0 ^8 \1 F$ p1 a; p
3 convolutions 3 k9 K% r* p ~6 v K7 f8 ^( ?
4 good kernels 2 U- l: m0 D4 o; Q
5 cesaro and abel summability: applications to fourierseries + l- |5 ^ N# L" U. J+ E
.5.1 cesaro means and snmmation
& l8 P2 X) d+ g0 Z" R! X5.2 fejer's theorem
4 k" `: u* B/ l+ d2 a, Y5.3 abel means and s-ruination + I0 u" y5 z1 d& w5 V/ q$ _/ M
5.4 the poisson kernel and dirichlet's problem in the unitdisc ) C! O6 `7 l0 P' T9 S+ f5 y
6 exercises
" l) u4 h4 e8 Y6 T) D( c+ F7 problems
) }5 P( P+ ]5 Z' G
& g6 ?0 l0 f, a+ Bchapter 3. convergence of fourier series . C1 {/ _3 A7 i' E ]: ^
1 mean-square convergence of fourier series
7 U0 [. d' T4 x$ v/ X K1.1 vector spaces and inner products K: _ O/ I$ P5 A8 J
1.2 proof of mean-square convergence
7 ]5 Q- N% Q' M- R2 return to pointwise convergence ' d5 \4 V1 A+ R, o) y7 N: R4 X& b" T' z
2.1 a local result , Z& Z2 _2 P( n T
2.2 a continuous function with diverging fourierseries & |1 ~) g7 n0 f4 k' E# w' r* ?: J
3 exercises 6 U8 a% C( V* N( q8 g
4 problems
; j5 r0 u7 T( F" ]4 p3 H K8 {$ D
, h9 p) }( i: V: ]. E! ^" vchapter 4. some applications of fourier series 7 m5 w" a- ]/ p+ c
1 the isoperimetric inequality 9 ] ~' k4 b4 b9 F/ q8 X
2 weyl's equidistribution theorem
" }0 i. b9 ^( R, l' h; b: {3 a continuous but nowhere differentiable function $ e" H: n* K, M$ ?6 O! y, J
4 the heat equation on the circle - j- H7 T# [: k! M( ^
5 exercises
/ x5 R& o% C% R E0 T6 problems - p4 N# ~: V* Q- [* R9 {
, d1 q, z+ d2 ]( Z1 I( R: Zchapter 5. the fourier transform on r 2 g9 A3 r7 _5 Z. C& e1 H6 X
1 elementary theory of the fourier transform 0 H" {% u% v, a0 p/ Z6 `. S: n5 k
1.1 integration of functions on the real line & e" S: n9 |; \
1.2 definition of the fourier transform ( n j Q3 c# R" J
1.3 the schwartz space
+ d2 C% `) Q4 t' \6 e ` b W1 h1.4 the fourier transform on 3
/ y% [7 S& G' ~8 H/ I1.5 the fourier inversion U* K1 S- E. j- }+ i" e+ _
1.6 the plancherel formula
& v0 g9 `# D9 B+ i5 U1.7 extension to functions of moderate decrease * g1 K$ V- w! b! f/ ~/ d
1.8 the weierstrass approximation theorem
5 C9 `; J5 h9 Z& I5 L2 applications to some partial differential equations
( i5 Q2 g0 m' {2 @2.1 the time-dependent heat equation on the real line
/ h- I, J6 ~6 P; d) T2.2 the steady-state heat equation in the upperhalf-plane
( I+ x! u- Q8 _1 P* v! \5 n3 the poisson summation formula 4 j) R( p0 Z# j! [/ d6 S: a
3.1 theta and zeta functions 6 Y8 E& m) o, z' ?
3.2 heat kernels 5 O5 K; l: b4 O; t
3.3 poisson kernels - Y& ^3 [* o% \, G8 y
4 the heisenberg uncertainty principle 7 K" Z3 h2 p2 d& f8 ^& E
5 exercises
]6 W( T0 T% h* i6 problems 9 j5 s$ \# w" E4 e# x
) j, Z$ G6 M+ i9 vchapter 6. the fourier transform on ra
$ z6 u; f W3 ~0 f7 B1 preliminaries
, t2 _9 `! i, l* V; v1.1 symmetries
% E1 g+ h- K% w1.2 integration on ra
. o6 M5 L0 n3 F |2 elementary theory of the fourier transform B$ D. K# S' |- H
3 the wave equation in rd ×r ' b) f$ ?9 F% R2 c: }! A
3.1 solution in terms of fourier transforms : o$ ~, Q4 u$ u5 ]" M
3.2 the wave equation in r3× r
% e6 p% ~# V, W( ]- d4 H2 O# s3.3 the wave equation in r2 × r: descent 0 O$ i, p5 T. w0 o, G5 f* I- Z
4 radial symmetry and bessel functions
/ [2 d! n5 ^( M5 i% a5 the radon transform and some of its applications
' S& U" o( s/ z5.1 the x-ray transform in r2 9 \+ o; ?& P4 [6 u
5.2 the radon transform in r3
8 b5 E. A8 `' [8 V) p! X/ T5.3 a note about plane waves
' Q+ c- ~9 D. W7 e/ c _9 H6 exercises 3 p- y+ b1 _8 C% X% Q
7 problems
# G* J1 s" ]* G" P% Y 2 A9 O5 |5 k! j& }# w2 |2 X
chapter 7. finite fourier analysis
/ z* I Z# V2 u* c1 fourier analysis on z(n)
5 t6 [. `" R; k1 X1.1 the group z(n) 7 F4 g* D9 x$ y3 v
1.2 fourier inversion theorem and plancherel identity onz(n) 3 P* L2 }$ R( {6 Y W. p* I
1.3 the fast fourier transform
. H$ d0 P1 V0 Q) @1 Z, D2 fourier analysis on finite abelian groups 4 t0 J8 f5 l( x1 |! k* {
2.1 abelian groups
+ D- n( ~: p, b8 o$ _) x6 o2.2 characters a. n4 \2 D7 |$ ?; L8 q: u2 s1 s
2.3 the orthogonality relations " E+ k' x# f9 P) n8 E
2.4 characters as a total family + @- X9 e. k5 A$ }9 q5 c
2.5 fourier inversion and plancherel formula + s/ z4 u R3 h, J6 X
3 exercises ; B5 s, K; Z5 h
4 problems + J: x x- R" A- q
: r8 e/ p0 }5 H) o2 ^. |
chapter 8. dirichlet's theorem
2 A% {) `; ^1 h$ j' c1 \. q# V1 a little elementary number theory
; F' p, L+ M& b, G. N% d( o9 Z1.1 the fundamental theorem of arithmetic 5 c& U; O: C7 v0 r1 W! i( c
1.2 the infinitude of primes
4 p1 `. W1 p2 ~) r; p5 J$ m2 dirichlet's theorem 1 z' F/ x) }& _% G1 J( ^1 b7 J% r
2.1 fourier analysis, dirichlet characters, and reduc-tion ofthe theorem 5 D% f3 F u3 }( u
2.2 dirichlet l-functions 6 k: `) ~1 e/ w
3 proof of the theorem
( i3 I, u5 ^, C- P7 ?: O3.1 logarithms . V: d0 M+ L& i* M: ?: H3 k5 `
3.2 l-functions
0 ]1 |0 H8 u( @& f3 x9 D$ u2 l3.3 non-vanishing of the l-function * l2 p0 x# D* m8 w
4 exercises , P/ D+ h/ h1 L: O- C* x, k4 \. ~
5 problems
) _5 _6 _& H- M+ l9 O5 x! yappendix: integration
% ]# U! o2 p) L+ j u! a9 n1 definition of the riemann integral 8 Z) U/ F8 w% a" f! U( M! ?
1.1 basic properties
, k9 Y1 P: H( R; u! J1.2 sets of measure zero and discontinuities of inte-grablefunctions
, I3 q9 B3 c; a# P. W& f2 multiple integrals 7 p# \$ `: e6 o6 c( A+ J6 a
2.1 the riemann integral in rd
# h+ x# Z8 i3 Y6 F2.2 repeated integrals . O) M- |2 P! u3 L; w. n
2.3 the change of variables formula
; p0 y; g, H' N" N0 n0 v3 Z& ]2.4 spherical coordinates : t* V e Z6 X% j& s
3 improper integrals. integration over rd 0 Y7 J0 j9 K/ ~/ {
3.1 integration of functions of moderate decrease 1 `9 o5 X9 ^% N& Y8 g' J- U
3.2 repeated integrals 7 C2 ~( M- g9 u" X$ g; S, S
3.3 spherical coordinates ; c6 ]" L& a9 w
notes and references
: @7 ?; H! [( B$ Rbibliography
+ P! c ~% W8 L: H+ i- z3 T8 fsymbol glossary |
|