回复 2# redplum ; S: @8 S& y* T- {4 \
+ Q$ a4 T, d" W3 j! K B- K1 R
' T9 G3 O5 p( e0 X" s 首先谢谢指教
N6 Y- n. J6 d) y( [下面是这个程序,指教一下那里需要修改啊clear; clc; errArr=[]; %% %³õʼ»¯£¡£¡£¡ initial; % Start clock t1 = clock; %% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));%³õʼ¶ÔżÒò×ÓÓë³Í·£Òò×Ó¼ÆËã% ik=0;%¼Æµü´ú´ÎÊý£¡£¡£¡ %µü´úÑ »·¹ý³Ì£¡£¡ while(abs(ROU)>=err)
! ^: r1 u$ h3 I%%
5 r; |% j. Z. a$ V P. B" K
%Calcute h,g matrix ROU=sl'*MU_MIN+su'*MU_MAX; errArr=[errArr;ROU;]; SIGMA=0; MU=SIGMA*ROU/(2*length(sl)); %ÖÐÐIJÎÊýÖÃÁã% 0 l" U" z, f' E8 G9 S
for i=1:30 temp=0;
% Y- |# Z! t$ [6 a K* \. a/ qfor j=1:30
temp=temp-V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); / j+ r* L x8 G: T7 t/ A( Q
end
, D+ D3 M) K4 D% ^: ]" t! Q/ ?/ Sif (i>6)
tPg=0;
6 u$ e0 H8 @3 Z% b8 Eelse
tPg=Pg(i); - {( ]6 a& w2 a8 `, K/ [1 |
end h(i)=tPg-Pd(i)+V(i)*temp; " q3 s" a2 c1 L h& F! B( k E0 [2 [
end
, o# y. I& K" ~5 ~4 y& k4 p! z0 }; s gfor i=1:30
temp=0;
2 p% G2 N& t0 Z* [0 `for j=1:30
temp=temp-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j));
1 i' a6 \: Y' Z2 n4 ^) o: Qend
6 e4 x0 y8 i' T0 }9 n6 J
if (i>6) tQg=0; , s% `0 S5 |; k1 \8 _: O% E2 z
else tQg=Qg(i); & B7 f0 M9 G0 Z8 T
end h(i+30)=tQg-Qd(i)+V(i)*temp; " o3 ?% G, _* |+ G
end5 b. R4 t: i' u0 u* n8 e7 U; b5 k7 C
% Cal h END 2 \# F$ `! t9 z' y" @
2 V7 F1 D" C. {- l% f+ D
for i=1:6 g(i)=Pg(i); g(i+6)=Qg(i);
. ~$ H- {. j- _- m" t& Tend
8 y0 o8 }7 d a+ ^' K4 Z2 M. a
for i=1:30 g(i+12)=V(i); 1 M% M. _6 X$ D( ]8 d1 @
end
9 L6 k. b' C1 k, r" U% N5 j% Cal g END
/ t: t% c G X5 u%Calcute h,g matrix END
: x$ ?6 y/ q5 g7 N%%
. o1 u7 [4 Q3 Q6 y/ p, v' D
%Calculate Jacobian&Hessian matix
5 E" N) ^% ]# v! x) |%First Step: Jf,Hf
T0 M/ U# ?4 o$ K0 A1 k9 r
for i=1:6 Jf(i)=2*gencost(i,5)*Pg(i)+gencost(i,6); Hf(i,i)=2*gencost(i,6); 9 {1 w1 Z9 V0 Y2 x! Z6 d
end
/ s' M7 i2 x, o9 l3 L$ r%Second Step: Jh, hΪµÈÊ½Ô¼Êø
2 R4 ~, W0 |. W3 G# Y# @7 Pfor i=1:6 %ǰ6ÐжÔPgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i)=1; $ `& ~7 G8 K* H5 _7 @: ^
end
# @% L- @ b+ p* m; w$ q: ufor i=7:12 %7-12ÐжÔQgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i+24)=1; # O3 F" Z1 h6 }4 `( ]8 k
end / n$ k8 `3 `8 C1 M" u
for i=1:30 %ÐγÉ13-42ÐеÄ1-60ÁÐ - K: B! z# R+ j! J) }
for j=1:30 tempVp=0; tempVq=0;
# j0 x+ u" d4 i( f! e' Qif (j==i)
9 w D: Y; g( I# a9 V5 y, {# B
for k=1:30 tempVp=tempVp-V(k)*aY(j,k)*cos(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-V(k)*aY(j,k)*sin(Vth(j)-Vth(k)-Yth(j,k)); ' [: h0 t3 }/ h8 m3 U- W
end Jh(12+j,i)=tempVp-aY(j,j)*V(j)*cos(Yth(j,j)); Jh(12+j,30+i)=tempVq+aY(j,j)*V(j)*sin(Yth(j,j));
* _# Q3 d! g( H9 {& W) d. eelse
Jh(12+j,i)=-aY(i,j)*V(i)*cos(Vth(i)-Vth(j)-Yth(i,j)); Jh(12+j,30+i)=-aY(i,j)*V(i)*sin(Vth(i)-Vth(j)-Yth(i,j)); ' c; r' p7 Z! U! \( A3 W
end
% v4 [+ R0 Y5 I3 Nend
2 K! T* { r. X2 y4 _3 b! N7 f! ?end
1 S" N. G7 k+ ^" O. }
for i=1:30 %ÐγÉ43-72ÐеÄ1-60ÁÐ
+ \, o( y: x& V4 |for j=1:30
tempVp=0; tempVq=0;
' _3 n" k- Q0 f, E4 g! v; jif (j==i)
0 p/ r' B% i# j/ I U; G1 Y/ w3 W" Vfor k=1:30
tempVp=tempVp+aY(j,k)*V(k)*sin(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-aY(j,k)*V(k)*cos(Vth(j)-Vth(k)-Yth(j,k)); ; v4 S7 A+ V- C
end tempVp=tempVp-V(j)*aY(j,j)*sin(-Yth(j,j)); tempVq=tempVq+V(j)*aY(j,j)*cos(-Yth(j,j)); Jh(42+j,i)=V(i)*tempVp; Jh(42+j,30+i)=V(i)*tempVq;
& m% f \! ?9 |( Gelse
Jh(42+j,i)=-aY(i,j)*V(i)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); Jh(42+j,30+i)=aY(i,j)*V(i)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j));
7 X6 [; |; C! Z) P+ g/ Send
: B3 q7 R9 k* I/ V+ a }+ \
end 1 b8 ?/ m: z5 B8 g! X3 R) g
end 6 g9 ~& O% h! A+ N" {
%Third Step: Hh
. _# Q# @! g! _$ m5 _%Óй¦²¿·Ö
3 m1 P$ h1 ~3 Y( @, a
for i=1:30
* s4 p; R" e9 g6 ?* Gfor j=1:30
$ l& @ L0 `# s$ b
for k=j:30 . c: A! g9 G, W* O7 [& Z& Z. [
if (j==k&&i~=j) Hh(j+12,k+12,i)=0; %VV Hh(j+42,k+42,i)=V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %%thth
6 h, V' ]8 ~( R$ E* X1 S7 G4 Uelseif (j==k&&i==j)
Hh(j+12,k+12,i)=-2*aY(j,j)*cos(Yth(i,i)); %VV temp=0; %thth
$ g9 Y2 Q% |' z8 a# d3 S' Vfor l=1:30
temp=temp+aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l));
2 U& N9 Z- k& Cend
temp=temp-aY(i,i)*V(i)*cos(-Yth(i,i)); Hh(j+42,k+42,i)=V(i)*temp; * Y% d& I. x0 ~% G
elseif (k==i) Hh(j+12,k+12,i)=-aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i); : U' Q/ v g0 G7 K' P
elseif (j==i) Hh(j+12,k+12,i)=-aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,k)*V(k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
/ w2 L% r8 c0 iend
/ w6 R) b Y# d V( \& mend
) k6 o4 j i* x, X+ V
end
, y1 }8 M: ?* m7 C9 y: u$ l1 Vend; W3 ?4 g7 H& Q C0 W1 O2 r# c( O
%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
" T- y2 y8 L- y4 Zfor i=1:30
8 z7 |: r- N: s+ l8 i- I& d3 ^
for j=1:30 ! L, N! f+ Q8 d5 m8 ]0 P
for k=1:30 8 c) u& E& u2 _5 {; }
if (j==k&&i~=j) Hh(j+42,k+12,i)=-V(i)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV 0 b5 x# c9 r- {
elseif (j==k&&i==j) temp=0; %thV
: w6 |" l7 q' }# d6 L7 U5 I" u$ x) zfor l=1:30
temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l));
3 q% y. f# I: {/ i- D1 Jend
Hh(j+42,k+12,i)=temp-V(i)*aY(i,i)*sin(-Yth(i,i)); + M L# H1 I. q
elseif (j==i) Hh(j+42,k+12,i)=V(i)*aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thV
0 J- L) i6 N$ l9 z' k) s! felseif (k==i)
Hh(j+42,k+12,i)=-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV E) N# U# }3 _0 F4 K/ h; }8 \
end / R' O' C: }* N& a# A
end * q7 _+ v: R5 p$ I
end Hh(13:42,43:72,i)=Hh(43:72,13:42,i)';
3 m: ?3 V% p5 U5 J2 {end$ q! ]9 r* S" d9 x! z2 i
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
, P) r+ [+ k0 r! [* F%ÎÞ¹¦²¿·Ö
, @1 b9 j( M `" Qfor i=1:30
5 ^* g0 Y# d: Z+ ~
for j=1:30
! F$ a9 G f* S2 Pfor k=j:30
v7 h" I: m1 Q) ?/ [ b& Z3 t' Sif (j==k&&i~=j)
Hh(j+12,k+12,i+30)=0; %VV Hh(j+42,k+42,i+30)=V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %%thth
( w) P/ r! z( B9 }3 Belseif (j==k&&i==j)
Hh(j+12,k+12,i+30)=2*aY(j,j)*sin(Yth(i,i)); %VV temp=0; %thth
, F% s7 E: r. s4 ?) I% ifor l=1:30
temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); - K$ d& d# {( K: A: e
end temp=temp-aY(i,i)*V(i)*sin(-Yth(i,i)); Hh(j+42,k+42,i+30)=V(i)*temp;
, C+ i( C u e' K9 X- A2 kelseif (k==i)
Hh(j+12,k+12,i+30)=-aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); & U7 q, r. f0 _: C
elseif (j==i) Hh(j+12,k+12,i+30)=-aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i+30)=-V(i)*aY(i,k)*V(k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); : K+ U* G3 G9 \4 c
end % d3 q) l2 ]; W4 j) K5 z5 A
end
# N0 L! ]* F1 c: Q' Cend
" m" v( Q+ y1 Z. }, m7 @end
- g5 }4 h( u/ p) e%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
' T! P4 v% C, r7 T2 F2 R
for i=1:30 . V) ^0 B+ s9 \: [
for j=1:30 6 o% X% a( |0 e5 n! A( Z
for k=1:30 " p) |: Y2 [8 E$ {" f- t
if (j==k&&i~=j) Hh(j+42,k+12,i+30)=V(i)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV $ {. T6 E0 O. R/ S3 }; m0 c
elseif (j==k&&i==j) temp=0; %thV 5 P9 @ Z1 B. k5 ?4 H
for l=1:30 temp=temp-aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l));
* h- [/ O1 R Q& A- U, S: o9 i2 Gend
Hh(j+42,k+12,i+30)=temp+V(i)*aY(i,i)*cos(-Yth(i,i)); + }8 t1 ] m+ ~: F% k- B3 e( {
elseif (j==i) Hh(j+42,k+12,i+30)=-V(i)*aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thV
`3 b, g h3 A9 ?; W! relseif (k==i)
Hh(j+42,k+12,i+30)=V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV ! e0 V4 O( I j# F; ]
end
& @6 @# E0 A$ ^- \' _end
0 o$ H* y0 W2 v. fend
Hh(13:42,43:72,i+30)=Hh(43:72,13:42,i+30)'; 2 K' _% ]! Z9 |. d4 z
end
4 q9 @0 L: m" l" Q( i%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
& v! b" p$ K' F/ K( H%HhÐγÉÍê±Ï
- K. ]( L! f. K* ?3 I$ ?
%Fourth Step: Jg, Hg Jg=eye(42,42); Jg=[Jg;zeros(30,42)]; Hg=zeros(72);
5 S2 Y: ?: s5 s2 ^) }) @%Calculation Jacobian&Hessian matrix END
i) G3 W. I" U1 m1 I4 m
%% & y8 d+ s- d% T w1 o. Y- F2 G. w( u
%Calculate Newton Iteration Îó²îµü´úÁ¿ - C, ^: R/ R q P! o) x
%Cal LX0-------------------------1 LX0=Jf-Jh*Lam+Jg*(-MU_MIN+MU_MAX); - A" `9 g+ G4 I1 w& O3 V* F
%Cal LLam-------------------------2 LLam0=h; pferr=max(LLam0); ! {3 d, g6 w0 L' g7 j' i: _
%Cal LMU_MIN-------------------------3 LMU_MIN0=g-sl-gmin; + Z' \. { ?6 m/ ~. s) [) x
%Cal LMU_MAX-------------------------4 LMU_MAX0=g+su-gmax;
) i: O( B7 ]4 I%Cal Lsl-------------------------5
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MU*ones(length(sl),1); - `" O: [6 g& _. m6 z, U
%CAl Lsu-------------------------6 Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MU*ones(length(su),1); ; J: E. j8 ~( b7 ]; R% s
%Calculate Newton Iteration Îó²îµü´úÁ¿ END!!! 0 x; I( y8 K" S' X" s0 g8 I
%% " V; h1 w$ V% w! x1 l2 a
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿
* x0 m% C# k; b9 r%1st Step: ·ÂÉäÐÞÕýÁ¿delXaf,·ÂÉäÐÞÕýÁ¿delLamaf
1 d) Y0 d$ ` W$ [; Y" \, Q" [%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã
" M h" ^# H: u. [: Ufor i=1:60
temp=temp+Lam(i)*Hh(:,:,i);
5 k% O7 }5 r+ Y8 S- W( [4 |end
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg';
2 i0 X& M0 N8 Q$ Mfor i=1:42
tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); & b" }/ w4 f" v4 h& K/ X. H0 r, Y
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg';
; e* W1 f1 ?, b, Yfor i=1:42
tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
4 S( B: P3 [: X* ]9 E' r6 B0 Dend
H=Hf-temp+tempgMUg1+tempgMUg2; 5 I, n2 E6 R* o% Y- Y
%S2:·ÂÉäKESAaf tempgMUg1=0; tempgMUg1=diag(MU_MIN)*sl+diag(MU_MIN)*LMU_MIN0; 9 \+ J. L5 k8 L
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i);
5 Y1 x( X2 F3 c/ U5 k2 l0 Y' {4 Eend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=diag(MU_MAX)*su-diag(MU_MAX)*LMU_MAX0;
* f2 t. l! l! i T' Wfor i=1:42
tempgMUg2(i)=tempgMUg2(i)/su(i);
; E$ q7 _; _6 s5 d/ U- J3 Z5 Nend
tempgMUg2=Jg*tempgMUg2; KESAaf=LX0+tempgMUg1-tempgMUg2; ; A5 U, _6 h2 A9 w C- a
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)]; $ t5 t/ a$ K% Z$ f* `$ D
%S4£ºRESULT RESULT=-[KESAaf;LLam0];
' O: i. K& T! D( Y: Z" X5 ]* O%S5:Cal ·ÂÉäÐÞÕýÁ¿delXaf,·ÅÉäÐÞÕýÁ¿delLamaf
delXaf=-Jh'\LLam0; delLamaf=Jh\(H*delXaf+KESAaf); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end 3 z+ {# m6 G. Z, G' s5 g5 B
' F# ~- p; V9 {# f: ^5 x# h* q- l
%2nd Step: ·ÅÉäËɳڱäÁ¿ÐÞÕýÁ¿delslaf, delsuaf
, y# J9 ~% R5 H%S1: delslaf
delslaf=Jg'*delXaf+LMU_MIN0;
5 ^ d. O3 I% F9 j. u& f9 k%S2: delsuaf
delsuaf=-Jg'*delXaf-LMU_MAX0; * m6 o+ J. }3 z7 E6 Q2 Q; s
- P5 I. G# B( V. W& c%3rd Step: ·ÅÉäÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MINaf,delMU_MAXaf
' [! B' t2 u2 L7 J) l4 ]3 e; j%S1: delMU_MINaf
temp=0; temp=-Lsl0-diag(MU_MIN)*delslaf; / d) j% A5 u; F# V5 i# l
for i=1:42 temp(i)=temp(i)/sl(i);
4 [- M$ i. k$ Y1 z! eend
temp(13)=0; delMU_MINaf=temp;
, V$ ^/ ?! v6 g3 p1 X2 h%S2: delMU_MAXaf
temp=0; temp=-Lsu0-diag(MU_MAX)*delsuaf;
9 Q$ Q s; }- l/ Z) G Z8 tfor i=1:42
temp(i)=temp(i)/su(i);
; L, R% [8 S! B# F, d9 kend
temp(13)=0; delMU_MAXaf=temp;
) i2 p4 G' i* `& k' o2 j( z- T
! |0 U2 E1 |4 l! B% @%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ END!!!!!!!!!!!!!!
+ U$ ~. S y* H) S4 o9 A( R! @0 L
* x8 i9 H o3 y F2 Z%%
- d5 q2 L! h ^8 x- I. E7 K4 W
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPpaf£¬ STEPdaf
( d+ ~3 S4 k! H$ o%S1: STEPpaf
. ~% F% [! |2 t+ vfor i=1:42
0 ?; Z \7 R# f4 kif (delslaf(i)~=0)
temp1=-sl(i)/delslaf(i);
/ H6 G; c% v; melse
temp1=Inf;
: f: k! x0 G, I2 f) V. d; z0 dend
6 V/ a( K3 Y: d: ]. I, e! gif (delsuaf(i)~=0)
temp2=-su(i)/delsuaf(i);
/ L, s) h8 m! N: Z9 qelse
temp2=Inf; , ?( a- f5 e: t2 F7 N& ]+ g. l
end
* }2 C' I4 y2 R% e( h% v7 cif temp1<temp2
min=temp1; + g* t$ x$ Z8 e* I* r
else min=temp2;
, G6 s) H9 Y! m. t( _end
1 V& @4 q0 ?" `, {& ]9 j
if min>1 min=1;
1 o- }4 Y. T, i* R# [. ?; Tend
$ O! c7 J9 Y& o$ |end
STEPpaf=0.9995*min; # I, ~4 s! O% X5 b9 D1 t1 N0 l% K
%S2: STEPdaf
8 E, e a+ Z3 dfor i=1:42
temp1=-MU_MIN(i)/delMU_MINaf(i); temp2=-MU_MAX(i)/delMU_MAXaf(i);
" V* w* U) w4 [1 E4 Nif temp1<temp2
min=temp1; # J, n, H7 S* L1 C* e& j
else min=temp2;
# R4 ~# X' j& \end
; d8 p+ N9 c R* O( D
if (i==13) min=0;
) M( _: i* O) k! [0 R1 Cend
5 Q* ~1 s5 M5 X4 B, S7 Bif min>1
min=1; ; f% N: I3 B2 G- P
end
4 I; `, _/ i+ Xend
STEPdaf=0.9995*min; 3 r4 z/ B1 o* @+ E& ^* q
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd END!!!!!
8 O: h* c: S" p! H' o8 K
# [( {7 F4 v8 I1 i- O% A6 r%¼ÆËã·ÂÉä¶ÔżÒòÊý¼°³Í·£Òò×Ó%
ROUaf=(sl+STEPpaf*delslaf)'*(MU_MIN+STEPdaf*delMU_MINaf)+(su+STEPpaf*delsuaf)'*(MU_MAX+STEPdaf*delMU_MAXaf); 0 W& W: ~; [+ X% ^
if (ROUaf/ROU)^2<0.2 SIGMA=(ROUaf/ROU)^2; & }9 ~1 @% Y3 L, C- u* F, u- g
else SIGMA=0.2; o. q8 \7 H V0 a: ^
end MUaf=SIGMA*ROUaf/(2*length(sl));
& Q; Y; a$ E* x7 K1 f%¼ÆËãÍê±Ï%
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MUaf*ones(length(sl),1)-diag(delslaf)*delMU_MINaf; Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MUaf*ones(length(su),1)-diag(delsuaf)*delMU_MAXaf; 3 t2 }2 y, o/ E
%Calculate Newton Iteration ÐÞÕýÁ¿
, Q: `/ B7 {4 Y%1st Step: УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam
- `6 W& N+ ~% Y5 _" L0 X%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã
1 o) y# S" G c/ Nfor i=1:60
temp=temp+Lam(i)*Hh(:,:,i);
& A% l: O) }! Z" oend
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg';
/ `7 Z: u+ q' Q. tfor i=1:42
tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); 6 K0 {: @& K$ R n) e8 ~% y
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; 0 N4 ?' p" [! j8 C" e( [
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
! F6 ]2 u" K' N' C$ A; zend
H=Hf-temp+tempgMUg1+tempgMUg2; 1 Y3 p# n; `- g! b* }
%S2:УÕýKESA tempgMUg1=0; tempgMUg1=Lsl0+diag(MU_MIN)*LMU_MIN0+diag(delslaf)*delMU_MINaf; 6 i4 r3 }2 u. H. A; r' U' m' p8 a2 |
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i);
% _. ?2 n; C& Q+ b/ |2 n$ L p7 y# qend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=Lsu0-diag(MU_MAX)*LMU_MAX0+diag(delsuaf)*delMU_MAXaf; % _0 R+ U! h, R* t/ p ?
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i);
8 D: t% q) n7 qend
tempgMUg2=Jg*tempgMUg2; KESA=LX0+tempgMUg1-tempgMUg2; & s! L0 d, A% b) l6 ]- u5 ]
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)];
7 n, t* |9 Y7 d3 W5 ^- ?5 O4 t! }%S4£ºRESULT
RESULT=-[KESA;LLam0]; . Q' u! x2 t" N2 R1 W* y1 z
%S5:Cal УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam delX=-Jh'\LLam0; delLam=Jh\(H*delX+KESA); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end
! m: E6 x3 F( x
7 K8 W; z8 I$ l* B%2nd Step: УÕýËɳڱäÁ¿ÐÞÕýÁ¿delsl, delsu
; c: ]8 Y2 ]( `! D! l%S1: delsl
delsl=Jg'*delX+LMU_MIN0;
$ P! \' [# @' L/ M% d7 l%S2: delsu
delsu=-Jg'*delX-LMU_MAX0;
% O! a4 f6 w1 N7 T$ @
8 i( @; _4 M( }2 y' y( ], b3 T%3rd Step: УÕýÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MIN,delMU_MAX
- t$ u, V2 @" F0 c s%S1: delMU_MIN
temp=0; temp=-diag(MU_MIN)*sl+MUt*ones(42,1)-diag(delMU_MINaf)*delslaf-diag(MU_MIN)*delslaf;
* S7 N1 T! F6 Y& k6 A: Dfor i=1:42
temp(i)=temp(i)/sl(i); 3 R9 S$ K: _( k
end temp(13)=0; delMU_MIN=temp; / a- X$ l" R. ~% V
%S2: delMU_MAX temp=0; temp=-diag(MU_MAX)*su+MUt*ones(42,1)-diag(delMU_MAXaf)*delsuaf-diag(MU_MAX)*delsuaf; 3 i/ i! Q1 ^( J) `2 Z
for i=1:42 temp(i)=temp(i)/su(i); * u9 U; w, A) j0 _" A/ b ^
end temp(13)=0; delMU_MAX=temp;
6 C% p6 e3 G* v! ~: r" M h
7 q7 B$ S2 H4 @
%Calculate Newton Iteration ÐÞÕýÁ¿ END!!!!!!!!!!!!!!
+ i7 |5 o( o- Y' A+ a%%
% ?) g2 H+ ? I( T%¼ÆËãУÕýÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd
8 R: [ v* C" {' H) ?5 |+ B( N
%S1: STEPp
1 h" M8 q! ?) n, F" @for i=1:42
& d7 n0 {/ b* A& r: k9 M, jif (delslaf(i)~=0)
temp1=-sl(i)/delsl(i); ( k- y5 r- L. t; l! p) b
else temp1=Inf;
" X, ?% x, ?8 S! x& M+ J7 Q8 nend
6 g$ p, q+ r( A2 I" N! A4 q
if (delsuaf(i)~=0) temp2=-su(i)/delsu(i);
) s; F2 l8 I$ \7 @else
temp2=Inf;
( V) H) N$ J; cend
. E6 M2 l0 ^- {2 M8 |* T# z; V# {if temp1<temp2
min=temp1;
& I. w5 j8 V1 y' Y( ?else
min=temp2; . q6 Q$ I4 {9 c) O: N
end
1 |! s9 F @: e( T9 U# b6 Vif min>1
min=1;
: l/ o ?* o' g/ t0 o* }+ C* Vend
2 V. _4 ~) z% ?. } e3 e+ rend
STEPp=0.9995*min; 4 u5 l P4 L9 |
%S2: STEPd
0 w! i+ ~1 m9 r1 n) u& p c+ Tfor i=1:42
temp1=-MU_MIN(i)/delMU_MIN(i); temp2=-MU_MAX(i)/delMU_MAX(i);
% N% h$ U' P( W# K( kif temp1<temp2
min=temp1; 3 y& `8 P5 N8 H6 f( Q( K) V
else min=temp2;
1 e9 L' s5 f! F# Y' Fend
0 i9 q# q+ o, b4 o: T" x9 zif (i==13)
min=0; , ?) z1 B8 n/ v+ D
end ) q) z R. ^$ h/ v
if min>1 min=1; " |: T: r' {6 F# N
end ' `2 y5 U. a$ s
end STEPd=0.9995*min;
3 F+ A: j# I+ u( m%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿
X=X+STEPp*delX; Lam=Lam+STEPd*delLam; sl=sl+STEPp*delsl; su=su+STEPp*delsu; MU_MIN=MU_MIN+STEPd*delMU_MIN; MU_MAX=MU_MAX+STEPd*delMU_MAX; Pg=X(1:6);Qg=X(7:12);V=X(13:42);Vth=X(43:72);
' h' t$ r- t* c7 m4 w% m# Q4 m%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ END!!!
& N/ K6 W& K! y+ \/ A
. N3 \; q1 f, g9 V
%¼ÆËã¶Ôż¼ä϶% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));
8 ]; m! C# n3 w- [" O7 R$ U4 \%%
& R2 {) a5 F9 D* X, J a. i4 e
%ÅжÏÊÇ·ñ³¬¹ýµü´ú´ÎÊý ik=ik+1;
+ M2 n4 W3 O% L5 y+ d3 Hif ik>IterNumMAX
disp('IterNum ERROR!!!!!'); 9 X* U, G/ P8 w2 o' W$ B- { d
break; * |; D+ O: g$ ~1 p5 k
end ( ]! [" C2 P& {2 X4 O
end et = etime(clock, t1); %% %Êä³ö²¿·Ö
$ o3 x; W1 U! G; S# H5 J0 l
if (ik<=IterNumMAX) 7 }5 ~/ M1 Q9 z g- y$ I
%% 9 W" V5 P/ |7 a. f# `5 b! F" Z
%ÇóµÃ×î´ó×îСµÈʽÎó²î F=0; for i=1:6 F=F+gencost(i,5)*(X(i)*baseMVA)^2+gencost(i,6)*X(i)*baseMVA; end
0 P: m& a: F. I E& Z% B
max=-10;min=10; for i=1:ik temp=LLam0(i);
3 g" Y* @* k% k! I2 Gif (temp>max) max=temp;
. w# l5 N; I3 I; O* S
end ( U8 R0 N0 J4 D; ^$ O
if (temp<min) min=temp;
6 \' g$ B& S3 Q* S( Q1 q, Qend
end max ik %% %Êä³ö½á¹û fprintf('\nConverged in %.2f seconds', et); fprintf('\nObjective Function Value = %.2f $/hr', F); fprintf('\n================================================================================'); fprintf('\n| Bus Data |'); fprintf('\n================================================================================'); fprintf('\n Bus Voltage Generation Load '); fprintf(' Lambda($/MVA-hr)'); fprintf('\n # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)'); fprintf(' P Q '); fprintf('\n----- ------- -------- -------- -------- -------- --------'); fprintf(' ------- -------'); : U2 w7 F9 D0 K+ `& c
for i = 1:30 fprintf('\n%5d%7.3f%9.3f', i,X(i+12),X(i+42)*180/pi); # j/ z" z. f/ f3 E: @- U8 b6 i
if (i<=6) fprintf('%10.2f%10.2f', X(i)*baseMVA, X(i+6)*baseMVA); 1 v! G5 t$ {+ x" p' ?+ ^4 a
else fprintf(' - - ');
! l% H1 K% d& [4 b! dend
fprintf('%10.2f %9.2f', bus(i, 3) , bus(i, 4) ); fprintf('%9.3f %9.3f', Lam(i),Lam(i+30)); _: c5 H. R& L/ b. R& J3 `, r8 ~2 \
if (i==30) fprintf('\n -------- -------- -------- --------'); fprintf('\n Total: %9.2f %9.2f',(X(1)+X(2)+X(3)+X(4)+X(5)+X(6))*baseMVA,(X(7)+X(8)+X(9)+X(10)+X(11)+X(12))*baseMVA) fprintf('\n'); 4 V$ f; Q) _. B- h0 J
end
. r6 q- \) T: `6 N' f5 qend
: F% P! k5 Q; n: A%%
%%Êä³öÇúÏßÄâºÏmain iterNum=[1:ik]'; %axis([0,ik+1,min,max]); hold on; f = fit(iterNum,errArr,'spline'); f=feval(f,iterNum); plot(iterNum,errArr,'o',iterNum,f,'-'); end |