回复 2# redplum 5 H* l+ {5 E, F+ h* ^8 W
0 F) d* M% Y. U% E7 e2 v8 i# o1 E, m G
首先谢谢指教$ o' ~' M7 R* ] W# a; [
下面是这个程序,指教一下那里需要修改啊clear; clc; errArr=[]; %% %³õʼ»¯£¡£¡£¡ initial; % Start clock t1 = clock; %% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl));%³õʼ¶ÔżÒò×ÓÓë³Í·£Òò×Ó¼ÆËã% ik=0;%¼Æµü´ú´ÎÊý£¡£¡£¡ %µü´úÑ »·¹ý³Ì£¡£¡ while(abs(ROU)>=err) # U9 p ]; H v" E0 ]
%% 4 U2 l) R& R, \& p0 m1 W) A
%Calcute h,g matrix ROU=sl'*MU_MIN+su'*MU_MAX; errArr=[errArr;ROU;]; SIGMA=0; MU=SIGMA*ROU/(2*length(sl)); %ÖÐÐIJÎÊýÖÃÁã% % j( S- }2 h% v/ M P. }' U) v
for i=1:30 temp=0;
) R4 r/ f9 @( Q. L& z% Zfor j=1:30
temp=temp-V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); 8 a5 Q! s2 s2 G- y# i
end 9 z4 O4 @* N8 L- D2 `
if (i>6) tPg=0; ) I6 u- y1 `' E+ |0 N1 v
else tPg=Pg(i); ' z' ]/ B. Q0 d) U$ p' D
end h(i)=tPg-Pd(i)+V(i)*temp; * ~7 Y' O$ {8 A3 r# X% O
end 9 J2 V. a1 H# r
for i=1:30 temp=0; * F2 g; O, k u1 @5 x% m
for j=1:30 temp=temp-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); ) W4 U- K6 J. Y4 m
end ( \5 k/ Y3 K+ P+ H, F; Y! V
if (i>6) tQg=0; : r4 r8 b/ J" s, `+ S
else tQg=Qg(i); 7 m5 q3 g2 T7 n" V" L* t) l
end h(i+30)=tQg-Qd(i)+V(i)*temp;
+ y o6 f3 U& g/ mend( j3 i0 c5 ~, w: r
% Cal h END
9 d! b8 S0 e2 E$ g9 W
' z" y4 b& {9 m: v* K5 `; sfor i=1:6
g(i)=Pg(i); g(i+6)=Qg(i); ; ~+ O# q* A [1 ~" i0 d( ~
end & U# o1 [/ J0 N" K
for i=1:30 g(i+12)=V(i);
3 M2 f( S' D- B& i) T. l! _( y! Nend5 i" I" Q# @0 P
% Cal g END
6 j6 f1 h X$ F%Calcute h,g matrix END
3 F. y& B# f, J$ z ]
%%
4 L8 D; |$ I: Z%Calculate Jacobian&Hessian matix
Y8 X* n' d* X# Q%First Step: Jf,Hf
& }; V% J8 y4 [ R. }9 f6 {
for i=1:6 Jf(i)=2*gencost(i,5)*Pg(i)+gencost(i,6); Hf(i,i)=2*gencost(i,6); : r4 q, p$ O( a3 L2 j% M" `; |
end 9 ~. K! t* A7 |
%Second Step: Jh, hΪµÈÊ½Ô¼Êø
$ @$ b0 @1 a9 |for i=1:6 %ǰ6ÐжÔPgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö
Jh(i,i)=1;
! E D' t# e$ r. ]5 g- Q9 _$ ~end
6 y7 t1 ]1 f) q2 ~3 w" M4 C
for i=7:12 %7-12ÐжÔQgÇóµ¼£¬ÓÉ´ËÒÑÇó³ö Jh(i,i+24)=1;
" F- i3 k( h. ^& ~' `2 c' cend
5 U. A9 k# g+ s" l$ P( l1 J% N5 O
for i=1:30 %ÐγÉ13-42ÐеÄ1-60ÁÐ 5 ?: D9 x7 R% K+ X
for j=1:30 tempVp=0; tempVq=0; 9 Z ~; ~: d4 D# |; [
if (j==i) ; z `( W2 g7 B3 O7 Q1 Z# Z+ L
for k=1:30 tempVp=tempVp-V(k)*aY(j,k)*cos(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-V(k)*aY(j,k)*sin(Vth(j)-Vth(k)-Yth(j,k));
/ B6 u$ `/ ~- i yend
Jh(12+j,i)=tempVp-aY(j,j)*V(j)*cos(Yth(j,j)); Jh(12+j,30+i)=tempVq+aY(j,j)*V(j)*sin(Yth(j,j));
~! j; L. ]" I6 r: J" S9 q; ]else
Jh(12+j,i)=-aY(i,j)*V(i)*cos(Vth(i)-Vth(j)-Yth(i,j)); Jh(12+j,30+i)=-aY(i,j)*V(i)*sin(Vth(i)-Vth(j)-Yth(i,j)); $ j( i X: L$ U8 u5 ?
end @ _; Q% {, Q' |% Z% O. Q
end 2 u+ B- _5 U8 U) P7 m% D
end - n I" K$ H' i! }3 e* n8 p
for i=1:30 %ÐγÉ43-72ÐеÄ1-60ÁÐ
6 z, o5 N; c X, o) ^for j=1:30
tempVp=0; tempVq=0; 3 y! q2 N$ s' l$ l: F
if (j==i) ; r# ?7 J3 a) X% e) y' p4 i8 l6 V& z0 f
for k=1:30 tempVp=tempVp+aY(j,k)*V(k)*sin(Vth(j)-Vth(k)-Yth(j,k)); tempVq=tempVq-aY(j,k)*V(k)*cos(Vth(j)-Vth(k)-Yth(j,k)); 4 D2 h: P1 a8 Y! _0 m0 g
end tempVp=tempVp-V(j)*aY(j,j)*sin(-Yth(j,j)); tempVq=tempVq+V(j)*aY(j,j)*cos(-Yth(j,j)); Jh(42+j,i)=V(i)*tempVp; Jh(42+j,30+i)=V(i)*tempVq;
4 V2 i0 q* L9 y4 K4 U; z* H1 Jelse
Jh(42+j,i)=-aY(i,j)*V(i)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); Jh(42+j,30+i)=aY(i,j)*V(i)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j));
|3 U8 r. v( ^ A1 z1 f7 H6 p- {end
$ P0 b. a1 R7 P e7 _0 s$ i' e% [
end
8 @( J7 i# o# S' n9 Z4 nend
+ G ?6 ^0 h6 M# l) V4 K6 R
%Third Step: Hh
5 h! l( P* Z- L" q%Óй¦²¿·Ö
+ h. N- A* s; F0 d- M3 N# P( [for i=1:30
6 a, _ t$ R' B+ s* w( s' Yfor j=1:30
0 S9 s0 _3 q" }" O) f* p) qfor k=j:30
" o8 {6 M; T0 Z1 X5 X! cif (j==k&&i~=j)
Hh(j+12,k+12,i)=0; %VV Hh(j+42,k+42,i)=V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %%thth + i( H; z) j7 O4 ^( }' z+ B
elseif (j==k&&i==j) Hh(j+12,k+12,i)=-2*aY(j,j)*cos(Yth(i,i)); %VV temp=0; %thth 3 t, w6 S6 }) |3 h: w+ ~$ h4 E
for l=1:30 temp=temp+aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l)); 6 |0 h4 e; r) A5 t
end temp=temp-aY(i,i)*V(i)*cos(-Yth(i,i)); Hh(j+42,k+42,i)=V(i)*temp;
Z" I8 y8 [+ F% a' M4 b! y% E) H: ^2 Belseif (k==i)
Hh(j+12,k+12,i)=-aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
3 f2 G% M& @+ O% q% @* q6 R- aelseif (j==i)
Hh(j+12,k+12,i)=-aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i)=Hh(j+12,k+12,i); Hh(j+42,k+42,i)=-V(i)*aY(i,k)*V(k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i)=Hh(j+42,k+42,i);
3 u( m5 W' h' x6 C- ?end
) ~9 ?; x& Q- O, a
end
6 f: A) y2 X+ m+ X, G4 a. Q( Nend
$ @& ^' Q) _* [" J) w8 m( k. N) @
end% A) ~* _' k% F& B1 b+ A
%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£© " z" G" W* _- i% W7 i n. X4 V1 z- N
for i=1:30 4 ~5 ^, J8 s+ h1 i) c5 w
for j=1:30 1 j( w# {' e) a
for k=1:30 1 U; U6 [. t# Z: K/ W0 a1 E
if (j==k&&i~=j) Hh(j+42,k+12,i)=-V(i)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV
+ b5 S( G# X. E0 K# Selseif (j==k&&i==j)
temp=0; %thV ' z9 U0 `- f: q. B% p0 i y& b2 s
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); ; {3 b% N H' g
end Hh(j+42,k+12,i)=temp-V(i)*aY(i,i)*sin(-Yth(i,i)); $ [6 |; Y6 [* B3 h7 Z1 L9 e! k V
elseif (j==i) Hh(j+42,k+12,i)=V(i)*aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thV ( r, E$ y$ I$ J5 D7 c
elseif (k==i) Hh(j+42,k+12,i)=-V(j)*aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thV
. t. Y! j$ g! ?4 L% \end
& T3 r/ N: u/ Y4 }! J. \end
6 j+ b/ c+ E. |% w! _end
Hh(13:42,43:72,i)=Hh(43:72,13:42,i)';
\. c, X6 u4 K, Oend
/ D% E1 T, B8 {2 Z: g1 l. s- Y$ d%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
( J) |0 s2 m2 r4 n/ L" d( u6 t( W
%ÎÞ¹¦²¿·Ö
5 Z5 L7 [+ n+ [7 U: gfor i=1:30
; W: L q/ i! j+ @ Ifor j=1:30
$ f3 l! V# J V P$ C+ `$ E' @for k=j:30
$ B. [- e" ]$ n4 H
if (j==k&&i~=j) Hh(j+12,k+12,i+30)=0; %VV Hh(j+42,k+42,i+30)=V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %%thth
2 ^+ e, ?/ C5 b5 velseif (j==k&&i==j)
Hh(j+12,k+12,i+30)=2*aY(j,j)*sin(Yth(i,i)); %VV temp=0; %thth + x8 O( W! J- W6 [
for l=1:30 temp=temp+aY(j,l)*V(l)*sin(Vth(j)-Vth(l)-Yth(j,l)); 3 w A! h0 n- w& Q
end temp=temp-aY(i,i)*V(i)*sin(-Yth(i,i)); Hh(j+42,k+42,i+30)=V(i)*temp; - D& u8 Z7 |' s5 |. ?2 A8 M4 b( a
elseif (k==i) Hh(j+12,k+12,i+30)=-aY(i,j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i)=-V(i)*aY(i,j)*V(j)*sin(Vth(i)-Vth(j)-Yth(i,j)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30); 4 @/ I; S1 b1 s6 r
elseif (j==i) Hh(j+12,k+12,i+30)=-aY(i,k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %VV Hh(k+12,j+12,i+30)=Hh(j+12,k+12,i+30); Hh(j+42,k+42,i+30)=-V(i)*aY(i,k)*V(k)*sin(Vth(i)-Vth(k)-Yth(i,k)); %thth Hh(k+42,j+42,i+30)=Hh(j+42,k+42,i+30);
# _7 s2 e& U2 R) @end
5 L$ f* ?9 c- R+ k% w
end
3 s0 N u! d0 a$ q. J/ m0 Iend
d; J. |$ B C7 I: G3 Vend
! T$ T0 l# N8 \5 e) m%ÖÁ´ËÒÑÐγɣ¨13-42£¬13-42£©ºÍ£¨42-72£¬43-72£©
5 G' T0 Y" r$ M5 F8 t) w$ |
for i=1:30 ' O; G1 u5 Z f' f# w, \- i
for j=1:30 - q) L- v. ~. L$ m' I: h; X
for k=1:30
3 |: j$ {4 Q+ Y( {! O( H- hif (j==k&&i~=j)
Hh(j+42,k+12,i+30)=V(i)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV / X, x: a3 K9 \4 J, m
elseif (j==k&&i==j) temp=0; %thV
* B6 P9 Q7 i! u) w; \& Yfor l=1:30
temp=temp-aY(j,l)*V(l)*cos(Vth(j)-Vth(l)-Yth(j,l));
& C9 Q2 \5 H$ q7 {end
Hh(j+42,k+12,i+30)=temp+V(i)*aY(i,i)*cos(-Yth(i,i));
9 n$ v) i) N4 E; `0 i! ?9 Relseif (j==i)
Hh(j+42,k+12,i+30)=-V(i)*aY(i,k)*cos(Vth(i)-Vth(k)-Yth(i,k)); %thV . A$ U( Z! W9 }
elseif (k==i) Hh(j+42,k+12,i+30)=V(j)*aY(i,j)*cos(Vth(i)-Vth(j)-Yth(i,j)); %thV
3 e3 H; }) ~1 b, cend
; S6 s0 l; _8 W6 B
end 9 p8 i% u: B, T
end Hh(13:42,43:72,i+30)=Hh(43:72,13:42,i+30)';
/ q- \. }5 ~! B% }3 o; `9 l) Dend* ]; j b8 _4 [9 {6 _1 _! k6 u* Y
%ÖÁ´ËÒÑÐγɣ¨42-72£¬13-42£©ºÍ£¨13-42£¬43-72£©
6 f5 \- x# A! s9 p%HhÐγÉÍê±Ï
& m! Q4 k+ N6 k. }- F J%Fourth Step: Jg, Hg
Jg=eye(42,42); Jg=[Jg;zeros(30,42)]; Hg=zeros(72);
! o3 q7 g' x9 R( O4 [7 j%Calculation Jacobian&Hessian matrix END
; O. Q2 x4 V6 o%%
8 v, B) p' W' @; Q9 t* t
%Calculate Newton Iteration Îó²îµü´úÁ¿ ; V: X$ d% |' Z- C
%Cal LX0-------------------------1 LX0=Jf-Jh*Lam+Jg*(-MU_MIN+MU_MAX); * i9 K6 {# X, ?; ?: Q8 c( p
%Cal LLam-------------------------2 LLam0=h; pferr=max(LLam0);
, F9 g1 L4 y1 q7 s( D* e0 q%Cal LMU_MIN-------------------------3
LMU_MIN0=g-sl-gmin;
! `0 W$ v9 D+ q7 y%Cal LMU_MAX-------------------------4
LMU_MAX0=g+su-gmax;
/ r, c9 F( \ i! H/ j7 ?%Cal Lsl-------------------------5
Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MU*ones(length(sl),1);
$ E' [( c* v# G2 I4 ^( M$ [, {%CAl Lsu-------------------------6
Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MU*ones(length(su),1); 0 U5 Z4 W: m! k5 \& d
%Calculate Newton Iteration Îó²îµü´úÁ¿ END!!! 8 l! Z/ v V- o9 Z9 ^# J+ C, _) {
%% ! j8 H7 `& D# D8 A# O1 {2 E
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ $ b( G. C2 R; _+ `4 C9 E% P) L0 k
%1st Step: ·ÂÉäÐÞÕýÁ¿delXaf,·ÂÉäÐÞÕýÁ¿delLamaf 7 q! r: f3 H" S9 V
%S1:H temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã
+ \, K# i+ i5 @% M5 lfor i=1:60
temp=temp+Lam(i)*Hh(:,:,i);
) Y6 E; c$ {9 ?0 @: K( [end
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg'; 6 X- R7 {% V0 k' N0 s' k6 X' d
for i=1:42 tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); $ K% i0 I4 G) q' x9 E
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg';
+ y; @ H z* C3 F+ _for i=1:42
tempgMUg2(i,:)=tempgMUg2(i,:)/su(i);
% r# n! e1 w, e, [# v7 {$ k, Gend
H=Hf-temp+tempgMUg1+tempgMUg2; 8 M! U! z( X0 u* |' D$ z! D
%S2:·ÂÉäKESAaf tempgMUg1=0; tempgMUg1=diag(MU_MIN)*sl+diag(MU_MIN)*LMU_MIN0; # J i- E* \! z8 N1 k
for i=1:42 tempgMUg1(i)=tempgMUg1(i)/sl(i); 7 Q" `( ?9 o; B" M& U5 t5 y' k
end tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=diag(MU_MAX)*su-diag(MU_MAX)*LMU_MAX0;
+ d- S# J0 U8 U3 qfor i=1:42
tempgMUg2(i)=tempgMUg2(i)/su(i);
! g- m0 Z( c, g. r* E5 f) ]end
tempgMUg2=Jg*tempgMUg2; KESAaf=LX0+tempgMUg1-tempgMUg2; 9 v$ N$ a: F1 S" O0 _
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)]; 9 }( B8 t1 e x- M7 z# I
%S4£ºRESULT RESULT=-[KESAaf;LLam0]; " R( ?5 [& ?6 l! E& a5 X; z+ Q
%S5:Cal ·ÂÉäÐÞÕýÁ¿delXaf,·ÅÉäÐÞÕýÁ¿delLamaf delXaf=-Jh'\LLam0; delLamaf=Jh\(H*delXaf+KESAaf); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end
+ m& k( j% c9 Z) N; b+ A7 [8 g
1 K& N; Y' ~/ j9 {, K
%2nd Step: ·ÅÉäËɳڱäÁ¿ÐÞÕýÁ¿delslaf, delsuaf
* E2 k# Y/ F; I# C" ~%S1: delslaf
delslaf=Jg'*delXaf+LMU_MIN0; % A$ C$ E& j( {! v
%S2: delsuaf delsuaf=-Jg'*delXaf-LMU_MAX0;
; i' U0 n; H6 ^6 t8 E1 s" u; C/ P
1 P2 `4 M' d- F7 C0 Z m) M9 g) c" O% @%3rd Step: ·ÅÉäÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MINaf,delMU_MAXaf
! e* i9 L. _3 H% \0 V" g%S1: delMU_MINaf
temp=0; temp=-Lsl0-diag(MU_MIN)*delslaf;
6 s$ k: [, R+ ^& sfor i=1:42
temp(i)=temp(i)/sl(i); $ x" q* h, ?4 L% \# ?' Y( I/ Q
end temp(13)=0; delMU_MINaf=temp;
/ q& e, Z, _. l9 E2 V%S2: delMU_MAXaf
temp=0; temp=-Lsu0-diag(MU_MAX)*delsuaf; # A* E/ W5 b' K
for i=1:42 temp(i)=temp(i)/su(i); 5 C0 V( ^9 s0 A9 ~
end temp(13)=0; delMU_MAXaf=temp;
, |. D8 G8 G* T
' v6 V l5 O! | R9 k+ Z. f
%Calculate Newton Iteration ·ÂÉäÐÞÕýÁ¿ END!!!!!!!!!!!!!!
+ w. k$ b$ P- K: ^
/ x+ y/ j) U4 | ?$ y& ]+ d
%%
+ c* Z+ K, } m7 ~) O& \. A# Y%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPpaf£¬ STEPdaf
" ]# x( W/ q2 Y# S3 |" [%S1: STEPpaf
0 K p6 n; U9 z9 j7 N
for i=1:42
$ T3 w* x7 H: R* F5 Rif (delslaf(i)~=0)
temp1=-sl(i)/delslaf(i); ! G+ ^8 O/ \7 @/ V% l* d
else temp1=Inf; 5 p: R: _8 x0 k) S
end % A* A; o; b! Z: f
if (delsuaf(i)~=0) temp2=-su(i)/delsuaf(i); , [ ?% A1 n) W$ K) q4 _2 a% ?
else temp2=Inf; 3 f- l. l/ \* q3 A- V' ?0 e0 ]
end
( l* x+ m& z4 `/ @1 X" f: hif temp1<temp2
min=temp1; 1 J$ o! \* _* D$ B, v
else min=temp2; . U; m- A/ a$ Y) M
end + i- ~& D7 x# w' |' C- X0 N/ O0 E
if min>1 min=1;
5 r. |/ k$ j! s' v hend
7 l/ x$ r- R$ g: n* @- P# G
end STEPpaf=0.9995*min; ( K+ J& q& g, }5 h9 I& ^1 B
%S2: STEPdaf
) `1 A4 o% b; `1 h, yfor i=1:42
temp1=-MU_MIN(i)/delMU_MINaf(i); temp2=-MU_MAX(i)/delMU_MAXaf(i); ! }/ q7 I5 o; N6 k, S6 [9 A
if temp1<temp2 min=temp1;
' _9 Z& v+ d: R1 B3 ^else
min=temp2;
6 D: ^0 w2 @8 d1 j+ F5 p+ Hend
- _$ i, X {8 @9 [if (i==13)
min=0;
7 v( m) a5 U, y' t9 w8 M! iend
' m2 t" [4 L5 @7 u+ q' N/ ?* Eif min>1
min=1; 8 g) |- W5 T- T+ Z( u, d
end
6 b b9 i2 R' E+ R0 y, d% `. t" D; Aend
STEPdaf=0.9995*min; " R, y, S4 |* J' c7 w8 ~; u
%¼ÆËã·ÂÉäÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd END!!!!! 6 J1 \% k, p& o
! F8 z/ P* a# P9 P* a, B& L" W
%¼ÆËã·ÂÉä¶ÔżÒòÊý¼°³Í·£Òò×Ó% ROUaf=(sl+STEPpaf*delslaf)'*(MU_MIN+STEPdaf*delMU_MINaf)+(su+STEPpaf*delsuaf)'*(MU_MAX+STEPdaf*delMU_MAXaf); . T1 N; Z' }8 Q; v! o- B2 O
if (ROUaf/ROU)^2<0.2 SIGMA=(ROUaf/ROU)^2; 8 R7 P) ^ n3 E7 R
else SIGMA=0.2; + }5 p" \0 ~. {2 c8 n; M8 m$ t8 @
end MUaf=SIGMA*ROUaf/(2*length(sl)); $ X+ w) Q1 E3 s& i( K! D# H
%¼ÆËãÍê±Ï% Lsl0=diag(MU_MIN)*diag(sl)*ones(length(sl),1)-MUaf*ones(length(sl),1)-diag(delslaf)*delMU_MINaf; Lsu0=diag(MU_MAX)*diag(su)*ones(length(su),1)-MUaf*ones(length(su),1)-diag(delsuaf)*delMU_MAXaf;
" f4 l- N2 w; t( t6 L" ~ d- f/ A%Calculate Newton Iteration ÐÞÕýÁ¿
( i. u7 \* S5 p6 l. q. y%1st Step: УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam
( o5 [! ?4 O6 C+ [$ a%S1:H
temp=0; %֮ǰÒÑÓùýÁÙʱ±äÁ¿temp£¬ÔÚ´ËÇåÁã 3 N4 Q* }* l; J; g. |: I s
for i=1:60 temp=temp+Lam(i)*Hh(:,:,i);
. A4 |& z. P' U- d# s) D: jend
tempgMUg1=0; tempgMUg1=Jg*diag(MU_MIN)*Jg';
7 S. q, v+ |: M2 P. yfor i=1:42
tempgMUg1(i,:)=tempgMUg1(i,:)/sl(i); 3 Y. d( l3 e7 \* B5 k% U0 z, i
end tempgMUg2=0; tempgMUg2=Jg*diag(MU_MAX)*Jg'; 5 J. \9 _2 `( D/ M* ~- K8 |
for i=1:42 tempgMUg2(i,:)=tempgMUg2(i,:)/su(i); 0 c+ G0 A( l! C+ z$ N$ y7 B X
end H=Hf-temp+tempgMUg1+tempgMUg2; ! `. M" f4 h w" c/ b N4 [ ^. h
%S2:УÕýKESA tempgMUg1=0; tempgMUg1=Lsl0+diag(MU_MIN)*LMU_MIN0+diag(delslaf)*delMU_MINaf;
5 G! z! H( v6 k3 e1 Lfor i=1:42
tempgMUg1(i)=tempgMUg1(i)/sl(i);
+ l" B1 b1 c5 u- h8 O [0 Oend
tempgMUg1=Jg*tempgMUg1; tempgMUg2=0; tempgMUg2=Lsu0-diag(MU_MAX)*LMU_MAX0+diag(delsuaf)*delMU_MAXaf; ) t: E. P8 z: f
for i=1:42 tempgMUg2(i)=tempgMUg2(i)/su(i); 0 G$ C. X% h& j; `: _
end tempgMUg2=Jg*tempgMUg2; KESA=LX0+tempgMUg1-tempgMUg2; ( @: }' b8 I t4 ?1 f
%S3:JACOBIAN JACOBIAN=[H -Jh;Jh' zeros(60)]; - ~ L- J0 o5 |4 V- x. v' P
%S4£ºRESULT RESULT=-[KESA;LLam0]; & _. g6 t+ R7 F1 t# e$ j5 L0 A
%S5:Cal УÕýÐÞÕýÁ¿delX,ÐÞÕýÁ¿delLam delX=-Jh'\LLam0; delLam=Jh\(H*delX+KESA); % temp=JACOBIAN\RESULT; % for i=1:72 % delX(i)=temp(i); % end % for i=1:60 % delLam(i)=temp(i+72); % end & I) O' [5 i, t8 w, O- e& p
- F6 f2 j! G) Q c+ p- h7 g%2nd Step: УÕýËɳڱäÁ¿ÐÞÕýÁ¿delsl, delsu
' Q5 y+ C) V' _0 P%S1: delsl
delsl=Jg'*delX+LMU_MIN0;
7 u: H3 S. K4 o& l4 d8 D0 n%S2: delsu
delsu=-Jg'*delX-LMU_MAX0;
7 }6 K& Q% E. C# m2 P1 U" {
- U* Z, H _" H3 f; C
%3rd Step: УÕýÀ ¸ñÀÊÈÕ³Ë×ÓÐÞÕýÁ¿delMU_MIN,delMU_MAX 7 I+ O! V, K: Q* y/ L6 O
%S1: delMU_MIN temp=0; temp=-diag(MU_MIN)*sl+MUt*ones(42,1)-diag(delMU_MINaf)*delslaf-diag(MU_MIN)*delslaf;
, U+ f& H) X) s: T7 i2 Lfor i=1:42
temp(i)=temp(i)/sl(i); + ^- I! s1 m& [8 t9 D
end temp(13)=0; delMU_MIN=temp;
$ S' n; X7 _, d%S2: delMU_MAX
temp=0; temp=-diag(MU_MAX)*su+MUt*ones(42,1)-diag(delMU_MAXaf)*delsuaf-diag(MU_MAX)*delsuaf;
" a& t* [- f2 {- `for i=1:42
temp(i)=temp(i)/su(i); 8 a7 y0 C/ b# Q* U* @2 X A$ L
end temp(13)=0; delMU_MAX=temp;
) ~, f f! ]8 e+ L3 d$ u
- j# y& ~7 K! R* N: T
%Calculate Newton Iteration ÐÞÕýÁ¿ END!!!!!!!!!!!!!!
6 D/ u& t) f* F%%
" e- q4 Q' I* b, l b+ [
%¼ÆËãУÕýÔ Ê¼²½³¤ºÍ¶Ôż²½³¤ STEPp£¬ STEPd l; |( o0 \2 q1 c2 W; u& [$ S
%S1: STEPp
9 Y5 Z1 S$ I- h9 @2 bfor i=1:42
+ d D$ H2 p+ N: Z5 F
if (delslaf(i)~=0) temp1=-sl(i)/delsl(i);
/ X, d# x$ {4 F2 F" r) Helse
temp1=Inf;
7 q* S8 a6 ~1 y% C2 |end
5 A: z8 y5 ~; y6 Fif (delsuaf(i)~=0)
temp2=-su(i)/delsu(i); 7 p8 ], u9 N! y4 T9 x! _" T
else temp2=Inf; : k$ l- l& q9 B( k1 G& h3 ]
end
" |/ F6 k$ F" k3 v* |: j9 ?if temp1<temp2
min=temp1; " v; a# }* Y9 ?3 ^* l
else min=temp2; 7 S" f# `5 }" y: D
end ) r; }% d' ^! M4 U. L& a. s
if min>1 min=1;
$ J, i! W" j" z ?9 P# Bend
! O; q) U y7 Qend
STEPp=0.9995*min; 6 \* X) ?. d5 e. { s$ S1 ~
%S2: STEPd ( K7 t" f* N- T4 R: c0 n
for i=1:42 temp1=-MU_MIN(i)/delMU_MIN(i); temp2=-MU_MAX(i)/delMU_MAX(i);
& ^' W K% F G3 |0 V/ v2 ~6 `% dif temp1<temp2
min=temp1;
" f3 m t G" p/ B0 @+ D- Helse
min=temp2; & z- b7 W" s9 f; F9 Y( @5 l' Q
end . {) L3 a, [: A' P S8 R$ G
if (i==13) min=0; 5 J- H% U& J: k
end
# F3 g& N# [2 k/ o( xif min>1
min=1;
) a3 t# ^% C- B) d; r: Rend
+ O) ?: w; n5 `( Eend
STEPd=0.9995*min;
/ [5 }3 K# o$ y+ o' E2 e9 d( N0 x7 l%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿
X=X+STEPp*delX; Lam=Lam+STEPd*delLam; sl=sl+STEPp*delsl; su=su+STEPp*delsu; MU_MIN=MU_MIN+STEPd*delMU_MIN; MU_MAX=MU_MAX+STEPd*delMU_MAX; Pg=X(1:6);Qg=X(7:12);V=X(13:42);Vth=X(43:72); 1 g. `6 v, f$ O- J2 Y& S- A
%¸üÐÂÔ Ê¼±äÁ¿ºÍ¶Ôż±äÁ¿ END!!!
8 v3 E( k6 q& L, Y* o
3 o5 {( C' k; d/ q+ _
%¼ÆËã¶Ôż¼ä϶% ROU=sl'*MU_MIN+su'*MU_MAX; MUt=SIGMA*ROU/(2*length(sl)); + Y; I1 B% E" L1 ?
%%
4 i# U2 j0 Y$ {: s5 U; k( i* f: n- G%ÅжÏÊÇ·ñ³¬¹ýµü´ú´ÎÊý
ik=ik+1;
. U2 E8 \. {; V$ n! _$ H' G; tif ik>IterNumMAX
disp('IterNum ERROR!!!!!');
/ Q5 |6 o. G1 x4 H: S. Ibreak;
' }) z c0 ~6 g* bend
& M$ n5 R& [0 j* M
end et = etime(clock, t1); %% %Êä³ö²¿·Ö
) I! t# H @, D/ W4 p
if (ik<=IterNumMAX) # c5 `; Y" a V6 C- y% \9 d
%% , U9 t6 Q6 k; K1 H* N( v1 B
%ÇóµÃ×î´ó×îСµÈʽÎó²î F=0; for i=1:6 F=F+gencost(i,5)*(X(i)*baseMVA)^2+gencost(i,6)*X(i)*baseMVA; end
& |1 f( c" ]3 s. h2 u
max=-10;min=10; for i=1:ik temp=LLam0(i);
3 r7 o7 O) H7 X+ C5 Jif (temp>max) max=temp;
* d0 p! g j7 B- X& E, D1 w* yend
1 e# ^7 y; e5 w1 S0 v k% u w: P8 i
if (temp<min) min=temp; * s3 E! Z4 @1 Z8 D* e! L/ s# e4 Q
end end max ik %% %Êä³ö½á¹û fprintf('\nConverged in %.2f seconds', et); fprintf('\nObjective Function Value = %.2f $/hr', F); fprintf('\n================================================================================'); fprintf('\n| Bus Data |'); fprintf('\n================================================================================'); fprintf('\n Bus Voltage Generation Load '); fprintf(' Lambda($/MVA-hr)'); fprintf('\n # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)'); fprintf(' P Q '); fprintf('\n----- ------- -------- -------- -------- -------- --------'); fprintf(' ------- -------');
+ [+ o4 A! ?, U; Vfor i = 1:30
fprintf('\n%5d%7.3f%9.3f', i,X(i+12),X(i+42)*180/pi);
- P6 z# j4 x7 }if (i<=6)
fprintf('%10.2f%10.2f', X(i)*baseMVA, X(i+6)*baseMVA);
0 ^( d9 U$ ]. ~% N' Z5 Ielse
fprintf(' - - ');
- h6 V R( T; ]+ O$ Lend
fprintf('%10.2f %9.2f', bus(i, 3) , bus(i, 4) ); fprintf('%9.3f %9.3f', Lam(i),Lam(i+30)); 6 ~% w4 c5 }7 T* ~# ^6 H$ n
if (i==30) fprintf('\n -------- -------- -------- --------'); fprintf('\n Total: %9.2f %9.2f',(X(1)+X(2)+X(3)+X(4)+X(5)+X(6))*baseMVA,(X(7)+X(8)+X(9)+X(10)+X(11)+X(12))*baseMVA) fprintf('\n');
" {; F( n! H, D9 l' O# h& w8 v3 B0 fend
' J; f/ e2 x0 ^5 U9 b3 H: ]* lend
6 i( N& {/ A" ?- c, R/ |' ?%%
%%Êä³öÇúÏßÄâºÏmain iterNum=[1:ik]'; %axis([0,ik+1,min,max]); hold on; f = fit(iterNum,errArr,'spline'); f=feval(f,iterNum); plot(iterNum,errArr,'o',iterNum,f,'-'); end |