ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR// b. |& T- _/ p9 v
ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/6 d& a- P. H v/ j w4 R) n
------------------------------------------------------------------------------------------------------------------------------------ 6 l/ ~. p. @! a$ e& M5 B" r& TYou lose, fella. The EMTP logic has detected an error condition, and is now going to terminate program execution. The following - F. H6 l. f' W5 G4 Fmessage summarizes the circumstances leading to this situation. Where an otherwise-unidentified data card is referred to, or where 8 w( {% }8 R# z3 M- tthe "last" card is mentioned, it is the most recently read card of the input data that is meant. The 80-column image of this card ) X* u' s+ Z; J- H; ? uis generally the last one printed out prior to this termination message. But possibly this last-read card has not yet been$ |! b' K$ Z4 g4 G, p) Q: e3 d
displayed, so a copy follows: . G0 ?& D5 W+ Z3 _: f " "# x9 F5 m3 T2 j: ~. F
KILL code number Overlay number Nearby statement number" y) q5 B$ [9 n- ^% `( W
212 18 3522, t" s9 L& [1 ^6 _
KILL = 212. A Newton solution for 1 coupled nonlinear elements has failed to converge within the iteration limit MAXZNO = 50. ) R, k# o: N7 m; _The current residual is 1.24294193E+04, which exceeds the sloppy convergence tolerance EPSTOP = 1.00000000E-01. The first of 0 G- U* x0 v. c2 T# x3 Lthe coupled, true, nonlinear elements (in order of data input) is located in row 1 of the nonlinear element table, and it& K! J4 D7 @8 t7 u& L% G
connects node "X0001A" with node "B ". The final coupled element is in row 1, and the matrix rank is 1. Finally, the' @5 D/ Y: F2 X: m
simulation time is T = 4.05000000E-07. Possible corrective actions include a decrease in the time-step size DELTAT, an increase % D" V% _8 l, R3 ^in the iteration limit MAXZNO, an increase in the divergence tolerance EPSTOP, and artificial splitting of the subnetwork in: T# x/ j' b" t8 @2 w* W. h
question by distributed-parameter lines (to reduce the number of coupled elements). In addition, it is possible for the user to 2 d+ T8 I# O$ r- Tmake a solution impossible by unrealistically limiting the Newton corrections. The user should remember that there can be no: a6 P) G& J. ^! f
solution if his bound on arrester voltage is less than the true solution voltage. The bound has a default value of 1.5 per unit, , D9 E+ x. O) \9 Calthough it can be changed by a"ZINC OXIDE" special request (columns 57-64, variable ZLIN(2)). 9 y5 O1 r- s" x$ j1 I- G5 [- b------------------------------------------------------------------------------------------------------------------------------------ 2 e% h/ T! F2 J+ tERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/+ T! G5 |$ _, Q5 ?
ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ERROR/ . o: E2 x" i4 y* \+ Z------------------------------------------------------------------------------------------------------------------------------------) Y$ { m; [& l. ]; M R$ X
4 _2 B$ z. o8 w
Actual List Sizes for the preceding solution follow. 01-Nov-10 17:02:18 N' c# r+ C, I$ ~% `7 g8 D$ w, v Size 1-10: 56 78 128 7 276 1 73 13840 1 3% u- q! A2 O& q! q
Size 11-20: 0 6 -9999 -9999 -9999 0 0 0 23 3590 ; M, t6 R6 o8 M9 j: _- K8 P Size 21-30: 126 375 253 1 -9999 25 -9999 -9999 -9999 0 % D& {8 {# Y, t- P: n3 MSeconds for overlays 1-5 : 0.047 0.000 0.047 -- (CP: Wait; Real) ) X3 o! V1 K. [6 N$ OSeconds for overlays 6-11 : 0.000 0.000 0.000* E% _0 ~1 b4 _- E u9 o: |" D: ?
Seconds for overlays 12-15 : 0.016 0.000 0.016 + ?* X4 l& A2 @7 e& e( e+ OSeconds for time-step loop : 0.000 0.000 0.000% l' b9 ~! h) r5 S/ p( q K, E; p# ~
Seconds after DELTAT-loop : 0.000 0.000 0.000 ( y3 s' w+ e7 j, z) Z1 G ---------------------------# Z8 t% M, g4 L1 C9 j
Totals : 0.063 0.000 0.063