TA的每日心情 | 开心 2016-3-17 22:07 |
---|
签到天数: 2 天 连续签到: 1 天 [LV.1]初来乍到 累计签到:2 天 连续签到:1 天
|
发表于 2009-6-16 16:46:45
|
显示全部楼层
第二本比较新 06年出的 2 o% j& }9 {% V( U( R9 I7 R
CONTRIBUTORS xvii8 |% y( A3 y/ [6 M0 V
FOREWORD xix8 L! h2 T8 I8 n0 O1 K& C4 h! Y
PREFACE xxi6 b3 q, L/ ]! W0 K( ]. l
ACKNOWLEDGMENTS xxiii
8 u/ C1 @* V' R) F2 ]/ SABOUT THE AUTHORS xxv
, y" W' z) Z6 x' w1 ALTERNATIVE SOURCES OF ENERGY 1, d; v' H& o: s. L
1.1 Introduction 1. E7 V$ N3 g7 K" b7 k" Y! d4 D! o( L+ I
1.2 Renewable Sources of Energy 2
8 k5 R2 d; z M$ f' H5 F3 q1.3 Renewable Energy Versus Alternative Energy 4
' x, o8 M! l/ ^/ y* Z @# P, W9 U' c1.4 Planning and Development of Integrated Energy 8: H7 E- ~/ a$ `6 t4 E9 A a6 Y W
1.4.1 Grid-Supplied Electricity 9
. ^) u: G1 g3 o/ ^3 T& h5 ~ V8 O' L1.4.2 Load 10
# h+ h0 t- i* g/ A. n% R1.4.3 Distributed Generation 10& }- V4 B& x w
1.5 Renewable Energy Economics 11
' d: Q) ?' m) P1.5.1 Calculation of Electricity Generation Costs 12
0 g' ?6 a; S) o' o! ^( _1.6 European Targets for Renewables 14$ x/ ~% @. x& a8 d4 S" ^% u
1.6.1 Demand-Side Management Options 151 o& e8 d$ J) v& y! L* n
1.6.2 Supply-Side Management Options 16$ ^, w. Z. ~ a0 r: J
1.7 Integration of Renewable Energy Sources 19
/ [! y% Z5 b; I& D6 \- q3 G% h7 S5 f g1.7.1 Integration of Renewable Energy in the United States 20" d4 d: E# b+ Z5 Y$ a T
1.7.2 Energy Recovery Time 210 I& R; U1 e1 ^: ~% g
1.7.3 Sustainability 23# E6 z6 E5 |3 Q/ Y
1.8 Modern Electronic Controls of Power Systems 26
2 Z9 r9 c$ ~6 Y' Y" P! p# tReferences 27/ Z% n. A5 g3 c; n
2 PRINCIPLES OF THERMODYNAMICS 28
4 \3 [, l2 o# b4 R$ b+ ~2.1. Introduction 28+ {2 ~7 Q' p$ P/ s( {
2.2. State of a Thermodynamic System 29
3 n( w _/ ~6 N- P# q; J2.3. Fundamental Laws and Principles 36' N9 J2 d) i, C: S9 T8 [8 W+ k
2.3.1 Example in a Nutshell 37
$ Z! H# w Z! h2.3.2 Practical Problems Associated with Carnot Cycle Plant 40
$ Z+ w; Q$ I4 j* |4 ~2 v; W8 |# o5 a2.3.3 Rankine Cycle for Power Plants 41
) e/ v" h+ r2 J2 ?+ Z# d& c2.3.4 Brayton Cycle for Power Plants 44
) S0 N4 H) f, `" `! f2.3.5 Energy and Power 468 k8 `# ?% o+ H
2.4 Examples of Energy Balance 47
$ f% T9 S7 L( T2 O; |6 ~: ^2.4.1 Simple Residential Energy Balance 47
4 s8 y: B6 U4 j, w/ x* {2.4.2 Refrigerator Energy Balance 481 T) _* {3 l) f2 Y6 C
2.4.3 Energy Balance for a Water Heater 49% Q6 P6 I7 ^( X
2.4.4 Rock Bed Energy Balance 51
* _3 R! S; a6 F2.4.5 Array of Solar Collectors 51
) ~0 L/ F3 a5 ?/ p7 X- z2.4.6 Heat Pump 52/ P- J- x; t9 P
2.4.7 Heat Transfer Analysis 53
2 ^" Y) U) O+ U8 e. B2.5 Planet Earth: A Closed But Not Isolated System 54
7 y/ p" ~, [% |# G- g# F$ o SReferences 56
7 x- d9 [& n8 O9 c3 HYDROELECTRIC POWER PLANTS 57
: S9 E9 }0 W& R& i* M9 [! ~" C3 A3.1 Introduction 57
; `6 a9 K9 ?: `+ _' v- O3.2 Determination of the Useful Power 58
. u X5 o* Q& Z" Y2 a3.3 Expedient Topographical and Hydrological Measurements 60% B; j. P* E+ G, k+ l
3.3.1 Simple Measurement of Elevation 60
) z3 s% @; w$ m' }2 w3.3.2 Global Positioning Systems for Elevation Measurement 607 c3 T/ a, c n @; t/ K# w
3.3.3 Specification of Pipe Losses 62: g. s0 M" z4 L7 m0 F+ ^
3.3.4 Expedient Measurements of Stream Water Flow 63: i# r) S9 ~! o/ Q* z! s
3.3.5 Civil Works 67
! i- M: W+ D" b. h. i3.4 Generating Unit 67
4 b$ D( e I% b9 C( s& O7 _3.4.1 Regulation Systems 675 q: A7 W7 g* \5 w Q) ?% A; s2 O) B
3.4.2 Butterfly Valves 68' p* p+ B& f7 h& t3 J8 W# ^3 Z
3.5 Waterwheels 682 t, F) V4 i {
3.6 Turbines 70
! l& \7 i1 r9 c7 K' s; N- ^3.6.1 Pelton Turbine 71
' ]1 a) r% s. p/ D# c3.6.2 Francis Turbine 747 k' E, e3 E1 u; [ j
3.6.3 Michel–Banki Turbine 778 D0 P, b4 k. r
3.6.4 Kaplan or Hydraulic Propeller Turbine 79
% a* h4 i( z5 Z3.6.5 Deriaz Turbines 80! Q8 {- K) X/ I) n! w* s! {: E
3.6.6 Water Pumps Working as Turbines 80% z Q6 [$ |. G2 c5 H L
3.6.7 Specification of Hydro Turbines 81
+ _2 W- N* m8 ]References 82
; N* _7 F& x# H1 y4 WIND POWER PLANTS 84+ r% x, E! p; C2 \! G
4.1 Introduction 84# h: a/ |0 I% s5 b4 s
4.2 Appropriate Location 85" k" t$ N* t2 }7 \" S0 X& t
4.2.1 Evaluation of Wind Intensity 85
( x+ s' I- E* i% t* c2 \* v4 ?4.2.2 Topography 93# B& k; }+ W, Y# u2 K4 D0 W
4.2.3 Purpose of the Energy Generated 95
" R9 f' ^7 u: h* \ `& C8 C4.2.4 Means of Access 95# w. U7 u' g9 s, r- X& z
4.3 Wind Power 959 e* o1 j g, f1 Z
4.4 General Classification of Wind Turbines 97
; J' Z- G; c! E/ d5 @4 s2 B3 @4.4.1 Rotor Turbines 99
2 @. D9 x) P5 S E; ^4.4.2 Multiple-Blade Turbines 990 P8 }' E" L" K6 \
4.4.3 Drag Turbines (Savonius) 100
! [; X# `" v0 o/ H$ C4.4.4 Lifting Turbines 101
( }6 H; z8 l: A- ~ ]6 Q* v4 | u$ B4 S4.4.5 System TARP–WARP 102
2 h* ~+ {4 S1 p( f/ j4.4.6 Accessories 103+ v8 t0 U6 [, |1 ]' e0 F
4.5 Generators and Speed Control Used in Wind Power Energy 104
, U# P. S/ R$ k& f3 a" ]4.6 Analysis of Small Generating Systems 107/ D+ w7 ]' @- u8 ^/ I, k
References 110* @7 T4 k. [3 s4 d( N
5 THERMOSOLAR POWER PLANTS 112' n. U C9 P7 n# D* a' W; K
5.1 Introduction 112& [2 X/ [5 y- G5 R
5.2 Water Heating by Solar Energy 112- [& t( |6 K3 q/ Q, f! C2 G
5.3 Heat Transfer Calculation of Thermally Isolated Reservoirs 115
5 [: P5 F* t; B9 f5.4 Heating Domestic Water 118: D0 ~- g5 p7 Y( C9 X
5.5 Thermosolar Energy 119/ p0 L) i2 [( R. t# L1 i! i4 q* w
5.5.1 Parabolic Trough 120
& U2 i/ C* l& H+ D* u0 N# y2 h5.5.2 Parabolic Dish 122
' ^% a; H! c8 a% ^ `/ i6 G* t* w# J) @8 j5.5.3 Solar Power Tower 124
1 x2 x+ b0 Q* \, b3 U) T5.5.4 Production of Hydrogen 1250 y6 [9 {8 X ^ Q" E
5.6 Economical Analysis of Thermosolar Energy 126
8 T$ Q$ g, ^, m" _. {( NReferences 127) A5 v/ t( K4 c) L
CONTENTS ix6 PHOTOVOLTAIC POWER PLANTS 129
- T+ M/ A1 E% K* P& I0 K2 {- k6.1 Introduction 1292 W* u9 t! Y3 X
6.2 Solar Energy 130
) c0 v: \+ S9 n) n6.3 Generation of Electricity by Photovoltaic Effect 132
6 V5 ]* B" }9 G& @7 t6.4 Dependence of a PV Cell Characteristic on Temperature 135
; p0 r5 H) J/ x7 G( R6.5 Solar Cell Output Characteristics 137
0 H+ X& @2 X+ H7 Z3 H8 g$ V- w: f6.6 Equivalent Models and Parameters for Photovoltaic Panels 139/ k3 @# D1 D# b u: c
6.6.1 Dark-Current Electric Parameters of a Photovoltaic Panel 140! A0 |8 c2 a) H6 T: P
6.6.2 Model of a PV Panel Consisting of n Cells in Series 142! Z: X) n( Q( H- O, {, P
6.6.3 Model of a PV Panel Consisting of n Cells in Parallel 144
* S: j2 _5 w; e" x7 t: Q6.7 Photovoltaic Systems 145
& y4 ? Z) l( j% v7 b6.7.1 Illumination Area 146
* F3 V8 _ ~* w3 E: w) n0 z6.7.2 Solar Modules and Panels 146
8 K- g) k" H8 G g6.7.3 Aluminum Structures 146
) k, R2 l. w S/ N& ~2 i6.7.4 Load Controller 148; O0 c5 p% v0 R$ u+ z; c2 X
6.7.5 Battery Bank 148
! D, ^7 C" u' V; U4 O* M' L# o6.8 Applications of Photovoltaic Solar Energy 149: ^, n2 c! S# d7 g! Q& X& t7 [
6.8.1 Residential and Public Illumination 1490 o$ p* }( e3 S! b' T
6.8.2 Stroboscopic Signaling 150# e3 }' x4 w' M8 Y
6.8.3 Electric Fence 150
5 g4 S q+ o) v8 N8 X i! F% W, @$ |6.8.4 Telecommunications 151/ O4 T1 c' d t+ ]7 [; M: M
6.8.5 Water Supply and Micro-Irrigation Systems 151( T$ {& q u6 b* d3 V/ q4 X8 b
6.8.6 Control of Plagues and Conservation of6 _' w4 [ C. k8 q
Food and Medicine 153/ Q8 S( e6 P6 w
6.8.7 Hydrogen and Oxygen Generation by Electrolysis 154
7 a/ c) X. d0 ~/ L) @6.8.8 Electric Power Supply 155
- Q3 F" [5 d) U+ A) I6.8.9 Security and Alarm Systems 156& X. n1 T0 F0 x! d! w }
6.9 Economical Analysis of Solar Energy 156" n( t5 M: H2 b) \7 r
References 157/ S8 {# b6 g3 V0 y8 k
7 POWER PLANTS WITH FUEL CELLS 159
" M+ i4 o, z' Y& g. R& N7.1 Introduction 159* s: t8 G' u: [# U K
7.2 The Fuel Cell 160. `% I3 e, m6 S! m1 I; a+ g
7.3 Commercial Technologies for Generation of Electricity 162
) I4 x, w8 H# g; K. Z& J7.4 Practical Issues Related to Fuel Cell Stacking 169& d& x! q$ l# Y7 F
7.4.1 Low- and High-Temperature Fuel Cells 169
" A; e6 E6 x7 H) C# u- f' V7.4.2 Commercial and Manufacturing Issues 170
4 } E: i( O! A3 {x CONTENTS7.5 Constructional Features of Proton Exchange+ R# _8 j& G9 j5 Z. V; ?- B
Membrane Fuel Cells 1711 H/ w" J0 z% D h* d) K& b
7.6 Constructional Features of Solid Oxide Fuel Cells 173* {1 x+ K4 H& h/ }: d5 i2 L; R) x
7.7 Water, Air, and Heat Management 1751 D! C6 p( M6 _- b C, ?" v' k
7.8 Load Curve Peak Shaving with Fuel Cells 176+ N% \$ }! {3 _6 U
7.8.1 Maximal Load Curve Flatness at Constant Output Power 1762 c( x5 g& a0 o1 {# |" L! a# K( O
7.8.2 Amount of Thermal Energy Necessary 178& F u4 r8 p% K( i& o
7.9 Reformers, Electrolyzer Systems, and Related Precautions 180
! x0 l& B' J! H% u! b7.10 Advantages and Disadvantages of Fuel Cells 181# R8 K0 Q, k# [) x2 o1 P
7.11 Fuel Cell Equivalent Circuit 182. q6 Z0 @( P1 q& G( f0 J' p
7.12 Practical Determination of the Equivalent Model Parameters 188
: d( p0 I# R. }; D' V6 g+ T; w7.12.1 Example of Determination of FC Parameters 1913 Q7 q! K9 Q/ b2 c8 A/ ], M
7.13 Aspects of Hydrogen as Fuel 194 U' a# z# R# e# d8 {1 m
7.14 Future Perspectives 195
. V. w( `4 Q- e, ]7 d, cReferences 196. ?& X. L7 M* }' I! W
8 BIOMASS-POWERED MICROPLANTS 198* u: ]( }* a) G! G; t
8.1 Introduction 198
Q% e/ _. G/ q4 o& A! R2 D9 P9 I8.2 Fuel from Biomass 202
- H- C3 p: N1 P8 c1 o6 L8.3 Biogas 204
+ s0 n. Z; W( ^8 W8.4 Biomass for Biogas 205
6 X- S. q! q m: e5 ^; X+ |/ @% S8.5 Biological Formation of Biogas 206& Y% A' X, N: h! A4 r* G8 F2 {8 C, l
8.6 Factors Affecting Biodigestion 207; d6 w1 ?% s* C! ]6 h) F: X1 L
8.7 Characteristics of Biodigesters 2094 r+ R. A! A! N, G. k
8.8 Construction of Biodigester 210
- `: Z7 b4 z: [: B$ I8.8.1 Sizing a Biodigester 211
; c$ L. U/ a, h2 c8.9 Generation of Electricity Using Biogas 2110 j) t. P j! X1 t
References 214
7 _! M: _ e: O: l' G9 MICROTURBINES 215) G6 n F$ k% m
9.1 Introduction 2151 s) L$ Z' k3 M4 v, Q6 I' [! V2 v
9.2 Princples of Operation 217* u) [6 y( ?4 \# ^( f/ Q7 L
9.3 Microturbine Fuel 219
# h! C1 K. E6 ]' ^9.4 Control of Microturbines 220
0 Z5 p/ q+ i& }( O8 ]9.4.1 Mechanical-Side Structure 220
* j u: m( q H( X; Z; v9.4.2 Electrical-Side Structure 222
) N, n1 p" Y4 Y; d% v7 @1 L2 y9.4.3 Control-Side Structure 224
) J6 Y8 T! l7 ]! z1 sCONTENTS xi9.5 Efficiency and Power of Microturbines 228
% J5 C; X5 ]5 R+ h9.6 Site Assessment for Installation of Microturbines 2301 u: J+ D9 w3 F. P% H, {2 o
References 231* N) i" l5 N# T: `" m
10 INDUCTION GENERATORS 233
$ ]" N# H7 b. G% Y! a10.1 Introduction 233' b* I' M+ g" R0 n8 U @
10.2 Principles of Operation 234
# m$ x2 T7 K- w& Z7 r7 G+ C+ A10.3 Representation of Steady-State Operation 236
4 L( r% [- y3 Z- @, M10.4 Power and Losses Generated 237
( [+ ^' Y) q+ G+ g. I0 ~9 l4 R10.5 Self-Excited Induction Generator 240
( A6 @3 R$ i. p, Z3 ]3 H: ]10.6 Magnetizing Curves and Self-Excitation 242
+ m' N, q& q8 a) s10.7 Mathematical Description of the Self-Excitation Process 2438 ~; T c8 t' Y) }" }3 J9 p
10.8 Interconnected and Stand-Alone Operation 2460 W' {, W( B6 ~: J: p# U
10.9 Speed and Voltage Control 248
|& ?, B4 A* B& I0 {10.9.1 Frequency, Speed, and Voltage Controls 249- \- U8 T% l' j# L; |8 S. ^
10.9.2 Load Control Versus Source Control3 w- `# k- i& \! a% Q* e9 ]- n2 A
for Induction Generators 2505 y* F2 w& a) J, ^
10.9.3 The Danish Concept 254. I* ^* v* I& B/ ]! Z
10.9.4 Variable-Speed Grid Connection 255$ z: ~1 W$ w( T" L& q$ _. r
10.9.5 Control by the Load Versus Control by% k4 S* N2 M& B1 r! o
the Source 256# w3 c l, o2 A6 u- m
10.10 Economical Aspects 258* e8 {5 p. f- y! X b- _
References 2592 t: i. J+ j( n- w' f: ]! C# r
11 STORAGE SYSTEMS 262
0 A4 r8 C/ t2 F; k5 Q7 q4 r5 w11.1 Introduction 262
3 S. t4 l; }. s4 a2 I( Y11.2 Energy Storage Parameters 2655 V/ r( b5 D1 Q% Q' M1 L( E& m1 I0 A9 J
11.3 Lead–Acid Batteries 268
$ R) m; {, p2 J1 {4 ^1 |11.3.1 Constructional Features 268
" F& {& M) k+ ~8 u11.3.2 Battery Charge–Discharge Cycles 269$ O3 ^! F0 M7 C- ?9 u7 Q+ f
11.3.3 Operating Limits and Parameters 271
! N4 R+ {! O" a7 s/ X# @11.3.4 Maintenance of Lead–Acid Batteries 273
/ P' W M8 d/ G4 k a4 Y11.3.5 Sizing Lead–Acid Batteries for DG Applications 273
# \9 ]/ ^/ f0 o, ^11.4 Ultracapacitors 276" e3 K$ k# q( B: b* W/ t
11.4.1 Double-Layer Ultracapacitors 2774 Z6 C- y# y3 d ?
11.4.2 High-Energy Ultracapacitors 278
6 k# Z" Y( K8 L. j8 Q3 w4 d11.4.3 Applications of Ultracapacitors 2793 } r: p4 u* c4 Y
xii CONTENTS11.5 Flywheels 2822 ?; r2 Y, E. m. A
11.5.1 Advanced Performance of Flywheels 282
% p1 Y' \& P! J0 }8 ~11.5.2 Applications of Flywheels 282( ?! I6 n$ [ r( N# M' j! K7 h
11.5.3 Design Strategies 284
* l! M% h9 m) O/ E8 L11.6 Superconducting Magnetic Storage System 286
+ V% h0 j- u0 M) S4 f( Z11.6.1 SMES System Capabilities 287
; {" r5 X3 s0 p. m11.6.2 Developments in SMES Systems 288
: h, F' [& `- O! {% |" y/ }0 R11.7 Pumped Hydroelectric Energy Storage 2903 `$ }( \: l1 o; t
11.7.1 Storage Capabilities of Pumped Systems 291
7 ?& v5 q- v1 n. [! s" H! B8 c11.8 Compressed Air Energy Storage 292& p5 D0 X6 ~9 X3 m% Q
11.9 Storage Heat 294
2 B& C$ |6 w8 U& i8 P% l11.10 Energy Storage as an Economic Resource 295
+ N& b% Z; u1 ZReferences 299- N0 f" i! K7 ?( [; l* K
12 INTEGRATION OF ALTERNATIVE SOURCES1 b5 v( i3 j3 Q& U3 Y+ y
OF ENERGY 301
: K( D1 D! k, v2 H/ N% H* h12.1 Introduction 3017 B g( X' m/ ~
12.2 Principles of Power Injection 302
* `8 U9 R' ]* m- u- a12.2.1 Converting Technologies 302% p! I! r7 J2 J. C/ Y( {
12.2.2 Power Converters for Power Injection$ T: e4 P( {8 U7 Y0 n0 r) p: `+ y$ v
into the Grid 304
4 R# a% L4 U; n* @& c/ d: M" \) L12.2.3 Power Flow 306
: n( |# L3 x; T8 y8 [! u9 c5 E12.3 Instantaneous Active and Reactive Power2 r8 y" C( B0 ]- k: r! z' V8 v
Control Approach 309
% e% C, Z$ N( J5 F) I12.4 Integration of Multiple Renewable Energy Sources 312
' O- a% ]5 ]4 l12.4.1 DC-Link Integration 315
$ ?: B' Z& q( V3 Z* Y! Z: D. \) K12.4.2 AC-Link Integration 3160 E% z3 ]# A" Z* F
12.4.3 HFAC-Link Integration 3179 q" j4 ~# [ i h; m' r
12.5 Islanding and Interconnection Control 320
L3 A' o* t7 R12.6 DG Control and Power Injection 325
; h6 e8 f: G7 a; iReferences 331/ `1 B: `( I' `& ]5 S/ @3 H
13 DISTRIBUTED GENERATION 333
* r! k- p6 o4 S# d2 s13.1 Introduction 333/ ]5 A; ~" q- i- g) x% V( z& N, o
13.2 The Purpose of Distributed Generation 335& u5 j7 W$ r1 w8 A2 E A
13.3 Sizing and Siting of Distributed Generation 338
+ V4 a. N& }! b4 B* d9 y8 ^13.4 Demand-Side Management 339
/ t, |% d1 K! h- z9 a$ ]13.5 Optimal Location of Distributed Energy Sources 340$ C" ^1 K. X0 O( }; K4 f
CONTENTS xiii13.5.1 DG Influence on Power and Energy
, b' Z1 x( `- ~8 hLosses 342
/ S c [3 A$ ]( u13.5.2 Estimation of DG Influence on Power
# A" V. G3 c5 Y' s, h( fLosses of Subtransmission Systems 3462 Y1 K( t0 _2 {' P1 z6 L; N
13.5.3 Equivalent of Subtransmission Systems
7 k; l. q4 L4 ~+ H5 m# v1 kUsing Experimental Design 348( x9 ]; X) Y3 M- S9 c
13.6 Algorithm of Multicriterial Analysis 350* |+ Q5 ]& J) w. |4 B
References 352
* V& V6 p; X$ w14 INTERCONNECTION OF ALTERNATIVE ENERGY+ B, k+ m# t/ l4 M, k0 Q& }8 _/ x
SOURCES WITH THE GRID 354 R* I. m5 l& M2 `# x5 F8 T& e/ H8 I
Benjamin Kroposki, Thomas Basso, Richard DeBlasio,
- B; }! ?+ Q# H5 Kand N. Richard Friedman
$ y6 y' p1 W' h, w( p) D14.1 Introduction 3548 R, `" A p5 a7 K, I7 P
14.2 Interconnection Technologies 357
# d8 ?2 J4 x X- G2 b$ R2 T14.2.1 Synchronous Interconnection 357
* K6 s. u D" k14.2.2 Induction Interconnection 358" y/ M: h8 P( O
14.2.3 Inverter Interconnection 359
. x" i5 S/ ^, P. l& ]! s14.3 Standards and Codes for Interconnection 359# M( K' i9 ~- o+ l7 J, j3 A$ p
14.3.1 IEEE 1547 360
% ~6 x& I( v3 E& y/ V14.3.2 National Electrical Code 361
( R* c* z+ Z8 @% J& e M14.3.3 UL Standards 362
* E4 j$ W( k) p$ N5 G: ~$ I3 m14.4 Interconnection Considerations 3648 \: Q" j; W; ~4 w2 ?& [+ G
14.4.1 Voltage Regulation 364 |3 H! J& n, q I; p/ C2 u
14.4.2 Integration with Area EPS Grounding 365
- b% r/ k. K# f5 p( S14.4.3 Synchronization 365
) Y: p$ @ W9 C# @0 p14.4.4 Isolation 365
3 W0 ^6 n% r$ U' ]9 x14.4.5 Response to Voltage Disturbance 366$ V B2 ~1 N; }! @6 f1 a9 z1 {
14.4.6 Response to Frequency Disturbance 367/ z4 I0 [5 ?' o P! z5 P
14.4.7 Disconnection for Faults 3682 r) E% L/ W, f. V1 j4 C! N
14.4.8 Loss of Synchronism 3699 p4 T( U3 ^2 k! n% O- q
14.4.9 Feeder Reclosing Coordination 3698 {) K( ]7 l% I1 R* y) D6 F
14.4.10 DC Injection 370& O8 r7 w7 O; J0 k9 s5 X
14.4.11 Voltage Flicker 371
, l& D7 H/ \' F14.4.12 Harmonics 371: g& T; t: d3 ~# H' {
14.4.13 Unintentional Islanding Protection 373
. V. G$ P3 P- g' X14.5 Interconnection Examples for Alternative Energy Sources 373( x9 I1 s$ `1 v; R& D! v0 V# ^; M
14.5.1 Synchronous Generator for Peak Demand Reduction 3751 @6 G- `" M1 A- Z! f7 V
xiv CONTENTS14.5.2 Small Grid-Connected Photovoltaic System 375
9 l4 k& C7 i3 H+ R6 t( [References 378- Q9 X7 K8 A/ ~2 u, g, s
15 MICROPOWER SYSTEM MODELING WITH HOMER 379. Q" x3 d& U5 b# A! r
Tom Lambert, Paul Gilman, and Peter Lilienthal' ^# O( [* }; h5 m+ T# q
15.1 Introduction 379, B9 F+ r! a6 U# Z7 \7 [
15.2 Simulation 381
) c' W$ m0 m& f. _& l! |# J15.3 Optimization 385! }2 ^# z2 W6 I& m
15.4 Sensitivity Analysis 388# C& t$ k0 X! ]( G9 k$ @/ @
15.4.1 Dealing with Uncertainty 389" c) Q8 ^# s1 `2 G( A% k* b/ N" H
15.4.2 Sensitivity Analyses on Hourly Data Sets 3919 h: a9 Z: x6 j2 O
15.5 Physical Modeling 393
+ C" M( z% [6 h3 `# n) M6 ~15.5.1 Loads 393- F' g$ k% y) Y, N
15.5.2 Resources 395* }& d" k2 ]3 y$ J$ t6 a) ^
15.5.3 Components 397
" b+ U) D2 v; v( O4 B. r a( ^* i15.5.4 System Dispatch 408
) _; }( w5 l& x3 m15.6 Economic Modeling 414
1 n# d. R' I& O2 ^7 t1 b0 j% T. ]References 4161 X- f; H& f, `0 ]( @% ]
Glossary 416
, H9 R# f8 [. k \2 |# o# VAPPENDIX A: DIESEL POWER PLANTS 419- W) h3 Q# K" J. L) V2 h
A.1 Introduction 419
% f9 M& e" l- d* oA.2 Diesel Engine 420
3 E4 m$ n* ^$ p; f4 B9 ~+ ~! ]A.3 Principal Components of a Diesel Engine 421% _8 U0 H( a; |, R! I( p
A.3.1 Fixed Parts 421* l1 }; y. g: `, K/ J0 h
A.3.2 Moving Parts 421
1 k8 n6 v. X; G1 L2 d1 CA.3.3 Auxiliary Systems 4227 ^. p1 ^: m2 R+ f6 {" m
A.4 Terminology of Diesel Engines 422
+ G! E) i' T8 J# H" P" EA.4.1 Diesel Cycle 422
/ t) G/ O9 X3 f- L, Y: tA.4.2 Combustion Process 424) o ^$ ^! T& v- H# M$ U9 x
A.5 Diesel Engine Cycle 425
% y" w6 k: y% w0 IA.5.1 Relative Diesel Engine Cycle Losses 425* L0 e( J$ b3 _
A.5.2 Classification of Diesel Engines 426
4 F1 @ k& H6 {4 \7 a* Y9 D2 t9 G' EA.6 Types of Fuel Injection Pumps 427
! _* x; T3 X2 DA.7 Electrical Conditions of Generators Driven by+ Z% f) y: ]" L' y
Diesel Engines 427* q4 D ]) }* I- D
References 429. I# w' y+ s R7 j! Z8 m
CONTENTS xvAPPENDIX B: GEOTHERMAL ENERGY 4310 y$ a J# E/ @; }* B! x6 v* r
B.1 Introduction 431
6 a5 W& s3 f# |. g! ], FB.2 Geothermal as a Source of Energy 432
% z5 S7 Q8 I. M* A& Z& ^7 @+ w2 ^B.2.1 Geothermal Economics 434
6 s* ~9 N8 n9 TB.2.2 Geothermal Electricity 435% W. H! m) B7 w* [1 O( E H) p- U
B.2.3 Geothermal/Ground Source Heat Pumps 436; Z# z% g2 y$ J( C5 A" W
References 437
6 f; a# n: @* ~. j4 b$ |( y" p- {APPENDIX C: THE STIRLING ENGINE 438
4 Z n. F U( n' u0 cC.1 Introduction 438
) D) a I, o7 {3 t* A2 ^C.2 Stirling Cycle 439; c1 X; l m) v# A" E0 E& g6 A
C.3 Displacer Stirling Engine 442
. `4 Z- E6 K7 d* _C.4 Two-Piston Stirling Engine 4447 B" c. C* h5 W- p( a' [
References 446
+ B2 |1 F: s6 J0 V. m2 hINDEX 447 |
|